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UM ESTUDO DA UTILIZAÇÃO DA DISTRIBUIÇÃO

NÃO-EXTENSIVA NA COSMOLOGIA

por

Lucio Marassi de Souza Almeida

Resumo

O processo de formação de estruturas foi descrito por Press e Schechter (PS) em 1974, através

da função de massa dos aglomerados de galáxias. O formalismo PS pressupõe uma distribuição

Gaussiana para o campo primordial das perturbações de densidade. Além de um sério problema

de normalização, PS não explica os atuais dados de raio-X dos aglomerados, e está em desacordo

com as modernas simulações computacionais. Realizamos um estudo da estat́ıstica desse campo

primordial, já que os dados mais recentes do WMAP indicam um desvio da gaussianidade; tais

desvios podem ser descritos pela estat́ıstica não extensiva de Tsallis (1988), pois ela se reduz

à distribuição Gaussiana, no limite do parâmetro livre q → 1, possibilitando uma comparação

direta com a teoria padrão; essa distribuição proporciona melhores ajustes aos dados de raios-X

dos aglomerados que a distribuição Gaussiana. Demonstramos também que a distribuição de

Burr corrige o problema da normalização. As funções de massa são abordadas ainda na presença

da energia escura, e obtemos limites sobre diversos parâmetros cósmicos, como a normalização

do Espectro de Potência σ8 , os parâmetros de densidade ΩME e ΩEE (matéria e energia escuras),

além do parâmetro ω da equação de estado da energia escura. A ´cosmologia não extensiva´ é

ainda abordada na radiação de Bremsstrahlung, a radiação primária dos aglomerados de raio-

X, e também na sonda de plasma, com evidentes aplicações em astrof́ısica experimental. Por

fim, tratamentos de dados dos atuais catálogos de galáxias permitiram análises conjuntas que

limitaram melhor os principais parâmetros dos modelos, objetivando eleger o candidato mais

adequado para o novo paradigma cosmológico.
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Caṕıtulo 1

INTRODUÇÃO

As novas observações astronômicas, aliadas a um arcabouço teórico em constante

evolução, transformaram a cosmologia em uma das mais excitantes áreas da ciência con-

temporanêa. Este fato se deve sobretudo às observações de SNe Ia em altos redshifts203,18,

aos novos dados de raio-X dos aglomerados de galáxias171, e às recentes observações da

radiação cósmica de fundo (RCF) em várias escalas angulares163,164.

A medida da temperatura da RCF, To = 2, 7 K, permitiu recontar a história cósmica

dos últimos bilhões de anos relacionando tempo com temperatura. Esse fundo de mi-

croondas é extraordinariamente isotrópico; a anisotropia de dipolo é devido ao movimento

peculiar da terra e a anisotropia de quadrupolo (∼ uma parte em 105) tem sua origem

nas perturbações gravitacionais da distribuição de matéria (anisotropia intŕınseca). O

espectro de corpo negro evidencia que a radiação tem estado em equiĺıbrio com a matéria

desde o ińıcio do universo, como previsto pelo modelo do Big Bang. A relação entre a

escala angular e o tamanho da perturbação na última superf́ıcie de espalhamento (quando

os fótons interagiram pela última vez com os bárions) depende da curvatura espacial e da

distância até essa superf́ıcie. A resolução e a extrema sensibilidade do WMAP (Wilkin-

son Microwave Anisotropy Probe) revelaram mapas completos do céu para a interação do

fluido de fóton-bárion na última superf́ıcie de espalhamento, e vários parâmetros foram

medidos com bastante precisão (h, Ωbh
2, ΩMEh2, ΩTotal, ns, σ8, entre outros). A posição

do primeiro pico acústico no espectro de potências da RCF favoreceu um universo espa-

cialmente plano. Em 2007 o satélite PLANCK deverá ser lançado, tendo este uma melhor

resolução espacial e maior sensibilidade na temperatura, permitindo com isso informações

ainda mais precisas que o WMAP.

1



Outro avanço de grande significado ocorreu no estudo de aglomerados de galáxias

para investigações no campo da cosmologia. Inicialmente, importantes resultados foram

obtidos através de observações em emissões de raio-X, e, mais recentemente, através do

uso do efeito Sunyaev-Zel’dovich17. Os aglomerados de galáxias são os maiores sistemas

virializados do Universo, bastante relaxados na região central, e devido a tais propriedades,

como esperado, já começaram a fornecer limites bastante robustos em cosmologia, sendo

uma das formas mais diretas de limitar a densidade de matéria do universo, Ωm.

Dos dados da RCF sabemos que o universo é aproximadamente plano, o que está de

acordo com o paradigma inflacionário163, ΩTotal = 1, 02±0, 02. Das observações dinâmicas

(estudos de raio-X de estruturas em grande escala, fração de massa do gás etc.), sabemos

que os modelos cosmológicos capazes de explicar os independentes estudos da idade de

aglomerados globulares, precisam conter apenas cerca de 23% da densidade cŕıtica em

forma de matéria (que é gravitacionalmente atrativa). Da nucleosśıntese primordial e

das curvas de rotação das galáxias, sabemos que a maior parte dessa matéria é escura.

Também sabemos hoje em dia que o universo expande aceleradamente devido aos dados

atuais das supernovaes SNe Ia, e para explicar tal aceleração e termos um acordo teórico

com os fatos anteriormente citados, devemos ter uma outra componente de energia com

pressão negativa chamada energia escura contribuindo com cerca de 73% para o conteúdo

cósmico, cujo candidato mais antigo é a constante cosmológica.

A natureza dos dois ingredientes básicos da cosmologia contemporânea (matéria e

energia escura) não foi ainda estabelecida. A matéria escura somente é percebida pelos

seus efeitos gravitacionais no universo (curva de rotação das galáxias, lentes gravitacionais,

estrutura de larga escala, etc.). Uma vez que a energia escura não é gravitacionalmente

atrativa, a formação de praticamente todas as estruturas do universo, em pequena e

grande escala, é proporcionada pela componente de matéria escura. Entender como se

formam os halos de matéria escura, que abrigam todas as galáxias e aglomerados de

galáxias, é essencial para se compreender o comportamento da matéria escura. Por outro

lado, compreendermos o papel desempenhado pela energia escura ao longo desse processo,

é igualmente importante para determinarmos a natureza desses dois componentes que

respondem por 96% do universo.

As grandes estruturas do universo (aglomerados e superaglomerados de galáxias)
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foram formadas pelo crescimento gravitacional de pequenas perturbações de densidade,

na época do desacoplamento matéria-radiação (em um redshift z ∼ 1000). A densidade

numérica de objetos colapsados de certa massa, quantidade denominada função de massa

dos halos de matéria escura, F (M), é uma quantidade central no estudo da evolução das

estruturas cósmicas.

O trabalho pioneiro descrevendo analiticamente a função de massa das galáxias foi re-

alizado por Press & Schechter154 em 1974. O chamado método Press-Schechter (PS) con-

sidera que toda região onde o contraste de densidade atingiu um valor cŕıtico δc condensa,

“colapsa” e torna-se um objeto auto-gravitante, destacando-se do fluxo de expansão do

universo, para se transformar em um objeto “ligado”. Na aproximação de PS, o contraste

de densidade, δ, é um campo aleatório descrito por uma distribuição Gaussiana154.

Embora a função de massa de PS tenha tido um êxito considerável na descrição

anaĺıtica da evolução dos halos, ela possui problemas graves a serem resolvidos. Em

primeiro lugar a função de distribuição estat́ıstica de PS tem um problema intŕınseco de

normalização, ou seja, integrando sobre toda a massa M obtemos exatamente 1
2
, e não

uma função normalizada, como deveria ser121. Para explicar tal fato, Press e Schechter

consideraram que o método computa apenas metade da massa efetivamente ligada, ou

seja, não contabiliza as regiões subdensas, responsáveis no futuro pelo restante da massa

ligada nos halos. Além desse grave problema de normalização, notamos que o método

PS está em desacordo com as mais modernas simulações de N-Corpos137,16, e estudos de

catálogos de halos em raio-X demonstram igualmente a inaptidão do formalismo de PS

em explicar esses dados observacionais156.

Os problemas inerentes ao método PS motivaram nosso estudo da função de massa

dos halos, na busca de uma descrição que se adequasse melhor aos dados observacionais

e, além disso, que pudesse corrigir o problema de normalização de PS sem abrir mão da

simplicidade matemática desse modelo de formação de estruturas.

Vemos ainda que estudos em diversas áreas do conhecimento mostram que a estat́ıstica

padrão de Boltzmann-Gibbs não se aplica a todos os sistemas f́ısicos da natureza. Tais

estudos sugerem naturalmente uma posśıvel solução para o problema estat́ıstico do formal-

ismo de Press-Schechter. Conexões entre a dinâmica e a termodinâmica estão ainda longe

de serem completamente compreendidas. Os últimos anos foram marcados por uma ativi-
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dade teórica extraordinária nos fundamentos da termodinâmica e mecânica estat́ıstica.

Todos os avanços estão de alguma forma conectados com o conceito de não-extensividade

das quantidades termodinâmicas básicas. Uma importante generalização do postulado da

entropia foi proposta por Tsallis em 198876.

Atualmente existe um grande acúmulo de evidências observacionais e argumentos

teóricos sugerindo que a entropia de Tsallis fornece uma descrição estat́ıstica e uma

termodinâmica convincente para vários cenários f́ısicos, dentre os quais destacamos:

comportamento de estrelas politrópicas107,15, turbulências e perturbações em plasmas

eletrônicos14,13, difusão anômala12, distribuições de Levy79, o problema do neutrino

solar106, distribuição de velocidades peculiar de aglomerados de galáxias104, ou de uma

maneira geral, sistemas que apresentam interações de longo alcance ou efeitos de memória

microscópica efetiva11.

Como é bem conhecido, as propriedades termodinâmicas de um sistema de muitas

part́ıculas podem ser calculadas através da mecânica estat́ıstica ou da teoria cinética.

A abordagem fundamental da mecânica estat́ıstica baseia-se na função de partição do

sistema, a partir da qual todas as grandezas termodinâmicas podem em prinćıpio ser

calculadas (por exemplo para um gás clássico ou quântico), enquanto que a solução cinética

tem como ponto de partida a função de distribuição de velocidades moleculares. Neste

projeto, daremos uma ênfase especial para o ponto de vista cinético, que no caso de um

gás clássico extensivo é representada pela distribuição de Maxwell.

Sabemos hoje que as interações de longo alcance, como a força gravitacional ou

Coulombiana, modificam substancialmente várias propriedades termodinâmicas usuais93–95.

Nesse sentido, depois do trabalho pioneiro de Plastino & Plastino (1993)107, notamos um

grande interesse na literatura por aplicações da estat́ıstica não-extensiva de Tsallis em

problemas de interesse astrof́ısico e cosmológico, devido justamente a presença de forças

gravitacionais (longo alcance) em tais sistemas f́ısicos140,15.

A formação de estruturas no universo é essencialmente provocada pela interação grav-

itacional dos halos de matéria escura. Desse modo parece natural aplicarmos a estat́ıstica

não-extensiva para descrever esse processo auto-gravitante. Vários estudos sobre a não-

gaussianidade primordial foram recentemente iniciados, como a evolução do espectro

de potências da formação de estruturas em modelos não-gaussianos10 e limites da não-
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gaussianidade primordial através da abundância de aglomerados em altos redshifts9.

Vários trabalhos ainda abordam, diretamente, a aplicação da estat́ıstica não-extensiva

como uma solução da não-gaussianidade na formação de estruturas, como estudos dos

limites da não-extensividade no aglomeramento de galáxias8, estudos do perfil de densi-

dade da matéria escura, com comparações entre a teoria não-extensiva e as simulações de

N-Corpos7, teorias não-extensivas da matéria escura e dos perfis de densidade dos gases6,

e diversos estudos mostrando ind́ıcios de que as flutuações de temperatura da radiação

cósmica de fundo seriam não-extensivas (veja por exemplo Bernui et al. 20055).

Retornando ao modelo anaĺıtico padrão de formação de estruturas, ou seja, à função

de massa dos halos de PS, notamos que a estat́ıstica do contraste de densidade primor-

dial é Gaussiana. O modelo de PS, como vimos, apresenta um problema intŕınseco de

normalização, além de não explicar os mais recentes dados numéricos e observacionais.

Em vista de tudo o que foi até agora exposto, seria natural estudarmos se o problema

estaria na estat́ıstica empregada por Press & Schechter. Esse foi o ińıcio de nosso estudo

da ‘cosmologia não extensiva’, onde mostramos que a estat́ıstica não extensiva é aplicável

à função de massa dos halos de matéria escura, estudamos suas propriedades de normal-

ização e provamos que ela, aplicada às observações de halos em raio-X, se adequa melhor

aos atuais parâmetros cosmológicos do WMAP que a estat́ıstica Gaussiana padrão de

PS. Iniciamos ainda estudos da aplicação da energia escura no processo. Por fim, ainda

estudamos as aplicações da não-extensividade na radiação de Bremsstrahlung e na sonda

de plasma, com evidentes aplicações para a cosmologia observacional. Mostramos ainda

análises estat́ısticas conjuntas de catálogos atuais de galáxias, que nos permitiram uma

estimativa melhor e mais atualizada dos parâmetros cosmológicos mais importantes, como

os parâmetros de matéria, energia escura e a constante de Hubble.

A tese está estruturada da seguinte forma:

• No caṕıtulo 2 procuramos mostrar uma sucinta śıntese da cosmologia atual, com as

suas principais definições, parâmetros e métodos de pesquisa teórica e observacional.

• No caṕıtulo 3 apresentamos um resumo dos aspectos principais que regem o estudo

da formação das grandes estruturas do universo, com um enfoque semi-relativ́ıstico

da evolução temporal das perturbações de densidade.
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• No caṕıtulo 4 mostramos rapidamente os principais conceitos e equações da es-

tat́ıstica não extensiva, que utilizaremos como base para nossos estudos.

• No caṕıtulo 5 estão concentrados os resultados principais da tese. Mostramos os

resultados de um recente trabalho139, onde propusemos nossa função de massa dos

halos baseada na estat́ıstica não-extensiva de Tsallis. Em outro recente artigo146

analisamos as propriedades estat́ısticas, especialmente a normalização, de diversas

distribuições (incluindo a não extensiva). Mostramos ainda que o nosso método se

ajusta às observações do catálogo de raio-X de galáxias HIFLUGCS156 (baseado no

ROSAT All-Sky Survey) com parâmetros compat́ıveis com o WMAP, enquanto o

mesmo não se processa no método PS padrão4. Estudamos também a influência da

energia escura no processo de formação de estruturas.

• No caṕıtulo 6 a cosmologia não extensiva é ainda abordada na radiação de

Bremsstrahlung, a radiação primária dos aglomerados de raio-X, e também na sonda

de plasma, com claras aplicações em astrof́ısica experimental. Por fim, tratamentos

de dados dos atuais catálogos de galáxias nos permitiram análises conjuntas127,17

que limitaram melhor os principais parâmetros dos modelos, objetivando eleger o

candidato mais adequado para o novo paradigma cosmológico.

• Finalmente, no caṕıtulo 7 apresentamos nossas conclusões e perspectivas de traba-

lhos futuros.
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Caṕıtulo 2

COSMOLOGIA

2.1 Introdução à Cosmologia do Big Bang

Most of the new cosmological data can be interpreted within a coherent framework known

as the standard cosmological model, based on the Big Bang theory of the universe and

the inflationary paradigm.

Our present understanding of the universe is based upon the successful hot Big Bang

theory. This theory rests upon four strong pillars, a theoretical framework based on gen-

eral relativity, as put forward by Albert Einstein and Alexander A. Friedmann in the

1920s, and three robust observational facts: First, the expansion of the universe, discov-

ered by Edwin P. Hubble in the 1930s, as a recession of galaxies at a speed proportional

to their distance from us. Second, the relative abundance of light elements, explained by

George Gamow in the 1940s, mainly that of helium, deuterium and lithium, which were

cooked from the nuclear reactions that took place at around a second to a few minutes

after the Big Bang, when the universe was a few times hotter than the core of the sun.

Third, the cosmic microwave background (CMB), discovered in 1965 by Arno A. Penzias

and Robert W. Wilson as a very isotropic blackbody radiation at a temperature of about

3 degrees Kelvin, emitted when the universe was cold enough to form neutral atoms, and

photons decoupled from matter, approximately 500,000 years after the Big Bang.

According to current thinking, the history of the observable universe broadly divides

into three stages. First there is an inflationary era, when the energy density is dominated

by the potential of a scalar field. Then there is a radiation dominated era when the energy

density is dominated by relativistic particles, which are called ‘radiation’ by cosmologists.
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Finally, lasting till the present epoch, there is a matter dominated era when the energy

density is dominated by the mass of non-relativistic particles, which are called ‘matter’.

Unless the contrary is implied by the specified units, I set h̄ = c = kB = 1.

2.1.1 O Big Bang

At the present epoch the Hubble time is of order 1010 yr. The era when the universe is

very hot and dense, and the Hubble time is only a tiny fraction of a second is popularly

known as the Hot Big Bang. The beginning presumably lies at the Planck epoch, when

the Hubble time is of order the Planck time

tPl = G1/2 = 5.39× 10−44 sec (2.1)

As we extrapolate back to this epoch, quantum gravity effects presumably invalidate the

concept of time, which conveniently removes the need to discuss what is before the Big

Bang!

2.1.2 Universos de Friedmann–Robertson–Walker

Cosmology was born as a science with the advent of general relativity and the realization

that the geometry of space-time, and thus the general attraction of matter, is determined

by the energy content of the universe20, Einstein’s original field equations are

Rµν − 1

2
Rgµν = 8πGTµν . (2.2)

These non-linear equations are too difficult to solve without some insight about the

symmetries of the problem (the universe itself). Einstein and Friedmann speculated that

the most “reasonable” symmetry for the universe at large should be homogeneity at all

points, and thus isotropy. It was not until the detection, a few decades later, of the

microwave background by Penzias and Wilson that this important assumption was finally

put onto firm experimental ground. The most general metric satisfying homogeneity and

isotropy at large scales is the Friedmann-Robertson-Walker (FRW) metric, written here in

terms of the invariant geodesic distance ds2 = gµνdxµdxν in four dimensions, µ = 0, 1, 2, 3,

see Ref.20 (I am using c = 1 everywhere, unless specified).

ds2 = −dt2 + a2(t)R2
0

[
dr2

1− kr2
+ r2dΩ2

]
, (2.3)
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where dΩ2 = dθ2 + sin2 θdφ2 is the metric on a two-sphere. The scale factor a(t) (the

physical size of the universe) characterizes the relative size of the spatial sections as a

function of time; we have written it in a normalized form a(t) = R(t)/R0, where the

subscript 0 will always refer to a quantity evaluated at the present time. The redshift z

undergone by radiation from a comoving object as it travels to us today is related to the

scale factor at which it was emitted by

a =
1

(1 + z)
. (2.4)

The spatial curvature parameter k takes on values +1, 0, or −1 for positively curved,

flat, and negatively curved spatial sections, respectively. Spatially open, flat and closed

universes have different geometries.

Depending on the dynamics (and thus on the matter/energy content) of the universe,

we will have different possible outcomes of its evolution. The universe may expand for

ever, recollapse in the future or approach an asymptotic state in between.

The most general matter fluid consistent with the assumption of homogeneity and

isotropy is a perfect fluid. The energy momentum tensor associated with such a fluid can

be written as20

T µν = p gµν + (p + ρ) UµUν , (2.5)

where p(t) and ρ(t) are the isotropic pressure and energy density of the fluid at a given

time in the expansion, and Uµ is the comoving four-velocity, satisfying UµUµ = −1.

The equations of motion of such a fluid in an expanding universe can be deduced from

the Einstein equations (2.2), where we substitute the FRW metric (2.3) and the perfect

fluid tensor (2.5) to obtain a Robertson-Walker solution . The µ = ν = 0 component of

the Einstein equations constitutes the Friedmann equation

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− k

a2R2
0

, (2.6)

where we have introduced the Hubble parameter H ≡ ȧ/a.

The conservation of energy (T µν
;ν = 0), a direct consequence of the general covariance

of the theory (Gµν
;ν = 0), can be written in terms of the FRW metric and the perfect

fluid tensor (2.5) as
d

dt

(
ρ a3

)
+ p

d

dt

(
a3

)
= 0 , (2.7)
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where the energy density and pressure can be split into its matter and radiation compo-

nents, ρ = ρM + ρR, p = pM + pR, with corresponding equations of state, pM = 0, pR =

ρR/3. Together, the Friedmann and the energy-conservation equation give the evolution

equation for the scale factor,

ä

a
= −4πG

3
(ρ + 3p) . (2.8)

Einstein was interested in finding static (ȧ = 0) solutions, both due to his hope that

general relativity would embody Mach’s principle that matter determines inertia, and

simply to account for the astronomical data as they were understood at the time. A static

universe with a positive energy density is compatible with (2.6) if the spatial curvature

is positive (k = +1) and the density is appropriately tuned; however, (2.8) implies that

ä will never vanish in such a spacetime if the pressure p is also nonnegative (which is

true for most forms of matter, and certainly for ordinary sources such as stars and gas).

Einstein therefore proposed a modification of his equations, to

Rµν − 1

2
Rgµν + Λgµν = 8πGTµν , (2.9)

where Λ is a new free parameter, the cosmological constant. Indeed, the left-hand side of

(2.9) is the most general local, coordinate-invariant, divergenceless, symmetric, two-index

tensor we can construct solely from the metric and its first and second derivatives. With

this modification, the Friedmann equations become

H2 =
8πG

3
ρ +

Λ

3
− k

a2R2
0

. (2.10)

and
ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
. (2.11)

The original cosmological constant turned out to be unnecessary when the expansion

of the universe was discovered. Meanwhile, particle theorists have realized that the cos-

mological constant can be interpreted as a measure of the energy density of the vacuum.

This energy density is the sum of a number of apparently unrelated contributions, each

of magnitude much larger than the upper limits on the cosmological constant today; the

question of why the observed vacuum energy is so small in comparison to the scales of

particle physics has become a celebrated puzzle.
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There are a number of other reviews. For astrophysical aspects, Carroll, Press and

Turner45, which should be consulted for numerous useful formulae and a discussion of

several kinds of observational tests not covered here. For introductions to cosmology,

see46,25.

A Expansão do Universo

In 1929, Edwin P. Hubble discovered the expansion of the universe. The scale factor

a(t) gives physical size to the spatial coordinates ~x, and the expansion is nothing but a

change of scale (of spatial units) with time. Except for peculiar velocities, i.e. motion

due to the local attraction of matter, galaxies do not move in coordinate space, it is the

space-time fabric which is stretching between galaxies. Due to this continuous stretching,

the observed wavelength of photons coming from distant objects is greater than when

they were emitted by a factor precisely equal to the ratio of scale factors,

λobs

λem

=
a0

a
≡ 1 + z , (2.12)

where a0 is the present value of the scale factor. Since the universe today is larger than

in the past, the observed wavelengths will be shifted towards the red, or redshifted, by an

amount characterized by z, the redshift parameter. The Hubble parameter is defined by

H = ȧ/a.

It is convenient to set a0 = 1, so that a(t) is simply the size of any comoving region (one

moving with the galaxies) relative to its present size. The present value of H, denoted by

H0 is called the Hubble constant. It is traditionally measured by observing the redshift

z ≡ ∆λ/λ of galaxies receding from us with velocity v ¿ 1. The velocity of such a galaxy

is given by v = Hr, and its redshift is just the non-relativistic Doppler shift z = v, leading

to Hubble’s law

z(= v) = H0r0 (2.13)

Hubble’s law is well established because relative distances are easy to establish. All

one has to do is find a ‘standard candle’, that is a type of object (say as star of a given

type) of which all examples have practically the same luminosity. Then its apparent

luminosity will vary with (distance)−3, and so measure relative distances. On the other

hand to fix H0 which is the constant of proportionality one has to know the luminosity of
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some object, which is much harder to do. Different estimates give H0 in the range 40 to

100 km sec−1 Mpc−1, and it is usual to define a quantity h by

H0 = 100h km sec−1 Mpc−1 (2.14)

The parameter h has been measured to be in the range 0.4 < h < 1 for decades, and

only in the last few years has it been found to lie within 10% of h = 0.65.

The homogeneity and isotropy of the early universe implies that its expansion is adi-

abatic (no heat flow), so that entropy is conserved.

The matter and energy content of the universe

From the Friedmann equation (where henceforth we take the effects of a cosmological

constant into account by including the vacuum energy density ρΛ into the total density

ρ), for any value of the Hubble parameter H there is a critical value of the energy density

such that the spatial geometry is flat (k = 0).One can then define a critical density ρc:

ρc ≡ 3H2
0

8πG
= 1.88 h2 10−29 g/cm3 (2.15)

= 2.77 h−1 1011 M¯/(h−1 Mpc)3 , (2.16)

where M¯ = 1.989 × 1033 g is a solar mass unit. The critical density ρc corresponds

to approximately 4 protons per cubic meter, certainly a very dilute fluid! In terms of

the critical density it is possible to define the ratios Ωi ≡ ρi/ρc, for matter, radiation,

cosmological constant and even curvature, today,

ΩM =
8πG ρM

3H2
0

ΩR =
8πG ρR

3H2
0

(2.17)

ΩΛ =
Λ

3H2
0

ΩK = − K

a2
0H

2
0

. (2.18)

If the individual components i have very simple equations of state of the form

pi = wiρi , (2.19)

with wi a constant. Plugging this equation of state into the energy-momentum conserva-

tion equation ∇µT
µν = 0, we find that the energy density has a power-law dependence

on the scale factor,

ρi ∝ a−ni , (2.20)
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where the exponent is related to the equation of state parameter by

ni = 3(1 + wi) . (2.21)

For massive particles (“dust” or simply “matter”) ρM ∝ a−3. For relativistic particles

(“radiation”) ρR ∝ a−4. For Vacuum energy ρΛ ∝ a0; from (2.21) this implies a negative

pressure, when the vacuum energy is positive. We can define a corresponding density

parameter

Ωk = 1− Ω ; (2.22)

this relation is simply (2.6) divided by H2. The most popular equations of state for

cosmological energy sources can thus be summarized as follows:

wi ni

matter 0 3

radiation 1/3 4

“curvature” −1/3 2

vacuum −1 0

(2.23)

We can then write the rate of expansion H2 in terms of its value today,

H2(a) = H2
0

(
ΩR

a4
0

a4
+ ΩM

a3
0

a3
+ ΩΛ + ΩK

a2
0

a2

)
. (2.24)

We can safely neglect the contribution of relativistic particles to the total density of

the universe today46, which is dominated either by non-relativistic particles (baryons,

dark matter or massive neutrinos) or by a cosmological constant. We can now write the

Friedmann equation today, a = a0, as a cosmic sum rule,

1 = ΩM + ΩΛ + ΩK , (2.25)

where we have neglected ΩR today.

2.1.3 Brief thermal history of the universe

According to the best accepted view, the universe must have originated at the Planck era

(1019 GeV, 10−43 s) from a quantum gravity fluctuation. It is plausible that a primordial

era of cosmological inflation originated then. Soon after, the universe may have reached
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the Grand Unified Theories (GUT) era (1016 GeV, 10−35 s). Quantum fluctuations of the

inflaton field most probably left their imprint then as tiny perturbations in an otherwise

very homogenous patch of the universe. At the end of inflation, the huge energy density

of the inflaton field was converted into particles, which soon thermalized and became

the origin of the hot Big Bang as we know it. Such a process is called reheating of the

universe. Since then, the universe became radiation dominated. It is probable that the

asymmetry between matter and antimatter originated at the same time as the rest of the

energy of the universe, from the decay of the inflaton. This process is known under the

name of baryogenesis since baryons (mostly quarks at that time) must have originated

then, from their annihilation with antibaryons.

After that we have the primordial nucleosynthesis (1 − 0.1 MeV, 1 s – 3 min), when

protons and neutrons were cold enough that bound systems could form, giving rise to the

lightest elements, soon after neutrino decoupling. The observed relative abundances of

light elements are in agreement with the predictions of the hot Big Bang theory. Nowa-

days, Big Bang nucleosynthesis (BBN) codes compute a chain of around 30 coupled nu-

clear reactions, to produce all the light elements up to beryllium-7 (The rest of nuclei,

up to iron (Fe), are produced in heavy stars, and beyond Fe in novae and supernovae

explosions). The most important light elements are H, 4He,D, 3He, 7Li, and perhaps also

6Li, see Ref.23,22. The present baryon fraction of the critical density can also be calculated

as22

ΩBh2 = 3.6271× 10−3 η10 = 0.0190± 0.0024 (95% c.l.) (2.26)

Clearly, this number is well below closure density, so baryons cannot account for all the

matter in the universe.

Immediately afterwards, electron-positron annihilation occurs (0.5 MeV, 1 min) and

all their energy goes into photons. Much later, at about (1 eV, ∼ 105 yr), matter and

radiation have equal energy densities. Soon after, electrons become bound to nuclei to

form atoms (0.3 eV, 3 × 105 yr), in a process known as recombination. Immediately

after, photons decouple from the plasma, travelling freely since then. Those are the

photons we observe as the cosmic microwave background. Much later (∼ 1−10 Gyr), the

small inhomogeneities generated during inflation have grown, via gravitational collapse,

to become galaxies, clusters of galaxies, and superclusters, characterizing the epoch of
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structure formation. It is the realm of long range gravitational physics, perhaps dominated

by a vacuum energy in the form of a cosmological constant. Finally (3K, 13 Gyr), the

Sun, the Earth, and biological life originated from previous generations of stars, and from

a primordial soup of organic compounds, respectively.

I will now review some of the more robust features of the Hot Big Bang theory of

which we have precise observational evidence.

The microwave background

One of the most remarkable observations ever made by mankind is the detection of the

relic background of photons from the Big Bang. This background was predicted by George

Gamow and collaborators in the 1940s. Penzias and Wilson had observed a weak isotropic

background signal at a radio wavelength corresponding to a blackbody temperature of

Tγ = 3.5± 1 K 20.

Since then many different experiments have confirmed the existence of the microwave

background, as the Cosmic Background Explorer (COBE) satellite. Nowadays, the photon

spectrum is confirmed to be a blackbody spectrum with a temperature given by

T
CMB

= 2.725± 0.002 K (systematic, 95% c.l.) ± 7 µK (1σ statistical) (2.27)

In fact, this is the best blackbody spectrum ever measured, with spectral distortions below

the level of 10 parts per million (ppm); it is an extraordinarily isotropic background.

Soon after COBE, other groups quickly confirmed the detection of temperature

anisotropies at higher multipole numbers or smaller angular scales. These anisotropies

play a crucial role in the understanding of the origin of structure in the universe.

2.2 THE COSMOLOGICAL CONSTANT

2.2.1 Vacuum energy

The cosmological constant Λ is a dimensionful parameter with units of (length)−2. From

the point of view of particle physics the cosmological constant is a measure of the energy

density of the vacuum — the state of lowest energy.
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Consider a single scalar field φ, with potential energy V (φ). The action can be written

S =
∫

d4x
√−g

[
1

2
gµν∂µφ∂νφ− V (φ)

]
(2.28)

(where g is the determinant of the metric tensor gµν), and the corresponding energy-

momentum tensor is

Tµν =
1

2
∂µφ∂νφ +

1

2
(gρσ∂ρφ∂σφ)gµν − V (φ)gµν . (2.29)

In this theory, the configuration with the lowest energy density (if it exists) will be one

in which there is no contribution from kinetic or gradient energy, implying ∂µφ = 0, for

which Tµν = −V (φ0)gµν , where φ0 is the value of φ which minimizes V (φ). There is no

reason in principle why V (φ0) should vanish. The vacuum energy-momentum tensor can

thus be written

T vac
µν = −ρvacgµν , (2.30)

with ρvac in this example given by V (φ0). (This form for the vacuum energy-momentum

tensor can also be argued for on the more general grounds that it is the only Lorentz-

invariant form for T vac
µν .) The vacuum can therefore be thought of as a perfect fluid as in

(2.5), with

pvac = −ρvac . (2.31)

The effect of an energy-momentum tensor of the form (2.30) is equivalent to that of a

cosmological constant, as can be seen by moving the Λgµν term in (2.9) to the right-hand

side and setting

ρvac = ρΛ ≡ Λ

8πG
. (2.32)

This equivalence is the origin of the identification of the cosmological constant with the

energy of the vacuum.

A (free) quantum field can be thought of as a collection of an infinite number of

harmonic oscillators in momentum space. Formally, the zero-point energy of such an

infinite collection will be infinite (See45 for further details). But we can apply a kind of

normalization to avoid the ´infinite´ problems.

The net cosmological constant, from this point of view, is the sum of a number of

apparently disparate contributions, including potential energies from scalar fields and

16



zero-point fluctuations of each field theory degree of freedom, as well as a bare cosmological

constant Λ0.

In the Weinberg-Salam electroweak model, we would naturally expect a contribution

to the vacuum energy today of order

ρEW
Λ ∼ (200 GeV)4 ∼ 3× 1047 erg/cm3 . (2.33)

In the case of vacuum fluctuations, we should choose our cutoff at the energy past which

we no longer trust our field theory. If we are confident that we can use ordinary quantum

field theory all the way up to the Planck scale MPl = (8πG)−1/2 ∼ 1018 GeV, we expect

a contribution of order

ρPl
Λ ∼ (1018 GeV)4 ∼ 2× 10110 erg/cm3 . (2.34)

But cosmological observations imply

|ρ(obs)
Λ | ≤ (10−12 GeV)4 ∼ 2× 10−10 erg/cm3 , (2.35)

much smaller than any of the individual effects listed above. The ratio of (2.34) to (2.35)

is the origin of the famous discrepancy of 120 orders of magnitude between the theoretical

and observational values of the cosmological constant. This is the “cosmological constant

problem”, one of the most significant unsolved problems in fundamental physics.

2.2.2 Possible Solutions for the Cosmological Constant Problem

Supersymmetry

Although initially investigated for other reasons, supersymmetry (SUSY) turns out to

have a significant impact on the cosmological constant problem, and may even be said

to solve it halfway. SUSY is a spacetime symmetry relating fermions and bosons to each

other. Just as ordinary symmetries are associated with conserved charges, supersymmetry

is associated with “supercharges” Qα, where α is a spinor index.

Considering “globally supersymmetric” theories, which are defined in flat spacetime

Qα|ψ〉 = 0 for all α, the energy vanishes automatically, 〈ψ|H|ψ〉 = 0. In the case of

vacuum fluctuations, contributions from bosons are exactly canceled by equal and opposite
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contributions from fermions when supersymmetry is unbroken. So the vacuum energy of

a supersymmetric state in a globally supersymmetric theory will vanish.

But, in a state where SUSY was broken at an energy scale MSUSY, we would expect

a corresponding vacuum energy ρΛ ∼ M4
SUSY. In the real world, the fact that accelerator

experiments have not discovered superpartners for the known particles of the Standard

Model implies that MSUSY is of order 103 GeV or higher. Thus, we are left with a

discrepancy
MSUSY

Mvac

≥ 1015 . (2.36)

So the SUSY can solve the cosmological constant problem halfway (at least on a log scale).

String theory

Unlike supergravity, string theory appears to be a consistent and well-defined theory of

quantum gravity.

String theory is naturally formulated in more than four spacetime dimensions, all

sub-theories, along with eleven-dimensional supergravity, composing limits of a single

underlying theory, sometimes known as M-theory. To bring the theory closer to the world

we observe, the extra dimensions can be compactified on a manifold whose Ricci tensor

vanishes. There are a large number of possible compactifications, many of which preserve

some but not all of the original supersymmetry. If enough SUSY is preserved, the vacuum

energy will remain zero.

Of course, to describe our world we want to break all of the supersymmetry. Thus, the

search is still on for a four-dimensional string theory vacuum with broken supersymmetry

and vanishing (or very small) cosmological constant.

Other Possibilities

Although a cosmological constant is an excellent fit to the current data, the observations

can also be accommodated by any form of “dark energy” which does not cluster on small

scales (so as to avoid being detected by measurements of ΩM) and redshifts away only

very slowly as the universe expands (to account for the accelerated expansion).

One way to parameterize such a component X is by an effective equation of state,

pX = wXρX . The relevant range for wX is between 0 (ordinary matter) and −1 (true
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cosmological constant); sources with wX > 0 redshift away more rapidly than ordinary

matter (and therefore cause extra deceleration), while wX < −1 is unphysical by the

criteria of the Dominant Energy Condition (although see62). Current observations of

Figura 2.1: Limits from supernovae and large-scale structure data on ΩM and the equation-

of-state parameter wX , in a flat universe dominated by matter and dark energy64. Thin

contours (on the left) represent limits from CMB and large-scale structure measurements,

while thick contours are those from SNe observations; solid lines apply to models with con-

stant wX , while dashed lines apply to models of dynamical scalar fields. The constraints

are combined on the right.

supernovae, large-scale structure, gravitational lensing, and the CMB already provide

interesting limits on wX
63,64. Figure (2.1) shows an example, in this case limits from

supernovae and large-scale structure on wX and ΩM in a universe which is assumed to be

flat and dominated by X and ordinary matter. It is clear that the favored value for the

equation-of-state parameter is near −1, that of a true cosmological constant, although

other values are not completely ruled out.

But the simplest physical model for an appropriate dark energy component is a single

slowly-rolling scalar field, sometimes referred to as “quintessence”65–67. In an expanding

universe, a spatially homogeneous scalar with potential V (φ) and minimal coupling to

gravity obeys

φ̈ + 3Hφ̇ + V ′(φ) = 0 , (2.37)

where H is the Hubble parameter, overdots indicate time derivatives, and primes indicate
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derivatives with respect to φ. The energy density is ρφ = 1
2
φ̇2 + V (φ), and the pressure is

pφ = 1
2
φ̇2 − V (φ), implying an equation of state parameter

w =
p

ρ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (2.38)

which will generally vary with time. Thus, when the field is slowly-varying and φ̇2 <<

V (φ), we have w ∼ −1, and the scalar field potential acts like a cosmological constant.

Replacing a constant parameter Λ with a dynamical field could allow us to avoid the

fine-tuning that inevitably accompanies the cosmological constant.

There are specific particle-physics models for the quintessence field; some based on

supersymmetric gauge theories, supergravity, small extra dimensions, large extra dimen-

sions, and also the possibility that the scalar field responsible for driving inflation may also

serve as quintessence68, although this proposal has been criticized for producing unwanted

relics and isocurvature fluctuations69.

There are other models of dark energy besides those based on nearly-massless scalar

fields. One scenario is “solid” dark matter, typically based on networks of tangled cosmic

strings or domain walls. Strings give an effective equation-of-state parameter wstring =

−1/3, and walls have wwall = −2/3.

2.3 DETERMINATION OF COSMOLOGICAL PA-

RAMETERS

2.3.1 The Lookback Time

The lookback time from the present day to an object at redshift z∗ is given by

t0 − t∗ =
∫ t0

t∗
dt

=
∫ 1

1/(1+z∗)

da

aH(a)
,

(2.39)

The age of the universe is obtained by taking the z∗ →∞ (t∗ → 0) limit.

For Ω = ΩM = 1, the behaviour a ∝ t2/3 gives the familiar answer

t0 =
2

3
H−1

0 . (2.40)
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The age decreases as ΩM is increased, and increases as ΩΛ is increased. Figure (2.2)

shows the expansion history of the universe for different values of these parameters and

H0 fixed; it is clear how the acceleration caused by ΩΛ leads to an older universe. There

- 0.5 0 0.5 1 1.5
H0  (t -  t0)

0.25

0.5

0.75

1

1.25

1.5

1.75

2

a(t)

Figura 2.2: Expansion histories for different values of ΩM and ΩΛ. From top to bottom,

the curves describe (ΩM, ΩΛ) = (0.3, 0.7), (0.3, 0.0), (1.0, 0.0), and (4.0, 0.0).

are analytic approximation formulas which estimate (2.39) in various regimes46,45, but

generally the integral is straightforward to perform numerically. We can Then use these

relation as a consistency check between the cosmological observations of H0, ΩM, ΩΛ and

t0. As an example we can estimate the Hubble parameter: using equation 2.40 we have,

for Ω = ΩM = 1

t0 =
2

3
H−1

0 = 6.5× 109h−1 yr, (2.41)

and the smallest conceivable value Ω0 ' .1 gives

t0 = .9H−1
0 = 8.8× 109h−1 yr; (2.42)

of course, we cannot measure the age of the universe directly, but only the age of its

constituents; an upper limit on the age of the universe is provided by the age of the

oldest stars (observed in globular clusters) which is bigger than 1.0×1010 years. With the

favoured value Ω0 = 1 this requires h < .65, whereas with Ω0 = .1 the limit is h < .88.
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2.3.2 The Luminosity Distance

The absolute luminosity L of a source is nothing but the energy emitted per unit time. A

standard candle is a luminous object whose absolute luminosity is known, within certain

errors. For example, Cepheid variable stars and type Ia supernovae are considered to be

reasonable standard candles. The energy flux F received at the detector is the measured

energy per unit time per unit area of the detector coming from that source. The luminosity

distance dL is then defined as the radius of the sphere centered on the source for which

the absolute luminosity would give the observed flux, F ≡ L/4πd2
L.

In a Friedmann-Robertson-Walker universe, light travels along null geodesics, ds2 = 0,

which determines the coordinate distance r = r(z, H0, ΩM, ΩΛ), as a function of redshift

z and the other cosmological parameters. Now considering the effect of the universe

expansion on the observed flux coming from a source at a certain redshift z from us, the

total flux detected will be

F =
L

4πa2
0 r2(z)

≡ L

4πd2
L

. (2.43)

The final expression for the luminosity distance dL as a function of redshift is thus given

by46

H0 dL = (1 + z) |ΩK |−1/2 sinn


|ΩK|1/2

∫ z

0

dz′√
(1 + z′)2(1 + z′ΩM)− z′(2 + z′)ΩΛ


 , (2.44)

where sinn(x) = x if K = 0; sin(x) if K = +1 and sinh(x) if K = −1. Expanding to

second order around z = 0, we obtain

H0 dL = z +
1

2

(
1− ΩM

2
+ ΩΛ

)
z2 + O(z3) . (2.45)

The first term corresponds to the Hubble law. It is only recently that cosmological

observations have gone far enough back into the early universe that we can begin to

probe the second term.

2.3.3 Relation Between Distance Measures

Distance measures which can be extracted from observable quantities. These include the

luminosity distance,

dL ≡
√

L

4πF
, (2.46)
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where L is the intrinsic luminosity and F the measured flux; the proper-motion distance,

dM ≡ u

θ̇
, (2.47)

where u is the transverse proper velocity and θ̇ the observed angular velocity; and the

angular-diameter distance,

dA ≡ D

θ
, (2.48)

where D is the proper size of the object and θ its apparent angular size.

The three measures are related by

dL = (1 + z)dM = (1 + z)2dA , (2.49)

so any one can be converted to any other for sources of known redshift.

2.3.4 The rate of expansion H0

Around 1929, Hubble measured the rate of expansion to be H0 = 500 km s−1Mpc−1, which

implied an age of the universe of order t0 ∼ 2 Gyr, in clear conflict with the Earth age,

given by geology30. Hubble’s data was based on Cepheid standard candles that were in-

correctly calibrated. Fortunately, in the past 15 years there has been significant progress

towards an accurated determination of H0. These improvements come from the replace-

ment of photographic plates with CCDs (charged couple devices, i.e. solid state detectors

with excellent flux sensitivity per pixel), and by the refinement of existing methods for

measuring extragalactic distances (e.g. parallax, Cepheids, supernovae, etc.). Finally,

with the development of completely new and independent methods to determine H0: a)

Gravitational lensing; b) Sunyaev-Zel’dovich effect; c) Extragalactic distance scale, mainly

Cepheid variability and type Ia Supernovae; d) Microwave background anisotropies. I will

review here the first two.

Gravitational lensing

A measurement of the time delay and the angular separation of the different images of a

variable quasar can be used to determine H0 with great accuracy.

Assuming a flat space with ΩM = 0.25, one can determine31

H0 = 72± 7 (1σ statistical) ± 15% (systematic) km s−1Mpc−1 . (2.50)
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In the case of lensing by a cluster of galaxies, the dark matter distribution in those sys-

tems is usually unknown, associated with a complicated cluster potential. The method is

just starting to give promising results and, in the near future, the prospects for measuring

H0 and lowering its uncertainty with this technique are excellent.

Sunyaev-Zel’dovich effect

The gravitational collapse of baryons onto the potential wells generated by dark matter

gave rise to the reionization of the plasma, generating an X-ray halo around rich clusters

of galaxies. The inverse-Compton scattering of microwave background photons off the hot

electrons in the X-ray gas results in a measurable distortion of the blackbody spectrum of

the microwave background, known as the Sunyaev-Zel’dovich (SZ) effect. Since photons

acquire extra energy from the X-ray electrons, we expect a shift towards higher frequencies

of the spectrum, (∆ν/ν) ' (kBTgas/mec
2) ∼ 10−2. This corresponds to a decrement of

the microwave background temperature at low frequencies (Rayleigh-Jeans region) and an

increment at high frequencies, see Ref.32. One can determine from this effect the distance

to the cluster, and thus the Hubble rate H0.

The advantages of this method are that it can be applied to large distances and it is

based on clear physical principles. Present measurements give the value32

H0 = 60± 10 (1σ statistical) ± 20% (systematic) km s−1Mpc−1 , (2.51)

compatible with other determinations.

2.3.5 The matter content ΩM

In 1970s the existence of dark matter began to be taken more seriously. At that time

there was evidence that rotation curves of galaxies did not fall off with radius and that the

dynamical mass was increasing with scale from that of individual galaxies up to clusters

of galaxies. Since then, new possible extra sources to the matter content of the universe

have been accumulating:

ΩM = ΩB, lum (stars in galaxies) (2.52)

+ ΩB, dark (MACHOs?) (2.53)
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+ ΩCDM (weakly interacting : axion, neutralino?) (2.54)

+ ΩHDM (massive neutrinos?) (2.55)

Many cosmological tests, will constrain some combination of ΩM and ΩΛ. It is hard

to constrain ΩM alone. Almost all methods actually constrain some combination of ΩM

and the Hubble constant h = H0/(100 km/sec/Mpc); the HST Key Project on the ex-

tragalactic distance scale finds h = 0.71± 0.06, which is consistent with other methods?,

and what I will assume below.

For years, determinations of ΩM based on dynamics of galaxies and clusters have

yielded values between approximately 0.1 and 0.4 — noticeably larger than the density pa-

rameter in baryons as inferred from primordial nucleosynthesis, ΩB = (0.019±0.001)h−2 ≈
0.0422, but noticeably smaller than the critical density. The quantitative results have re-

mained unchanged until now, but our confidence in them has increased greatly.

The matter content of the universe can be deduced from the mass-to-light ratio of

various objects in the universe; from the rotation curves of galaxies; from microlensing

and the direct search of Massive Compact Halo Objects (MACHOs); from the cluster

velocity dispersion with the use of the Virial theorem; from the baryon fraction in the X-

ray gas of clusters; from weak gravitational lensing; from the observed matter distribution

of the universe via its power spectrum; from the cluster abundance and its evolution;

from direct detection of massive neutrinos; from direct detection of Weakly Interacting

Massive Particles (WIMPs), and finally from microwave background anisotropies. I will

briefly review just a few of them.

Luminous matter

This method of estimating ΩM is performed by measuring the luminosity of stars in galax-

ies and then estimate the mass-to-light ratio, defined as the mass per luminosity density

observed from an object, Υ = M/L. This ratio is usually expressed in solar units, M¯/L¯,

so that for the sun Υ¯ = 1. The luminosity of stars depends very sensitively on their

mass and stage of evolution. The mass-to-light ratio of stars in the solar neighborhood

is of order Υ ≈ 3. For globular clusters and spiral galaxies we can determine their mass

and luminosity independently and this gives Υ ≈ few. For our galaxy,

Lgal = (1.0± 0.3)× 108 hL¯ Mpc−3 and Υgal = 6± 3 . (2.56)
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All the luminous matter in the universe, from galaxies, clusters of galaxies, etc., account

for Υ ≈ 10, and thus34

0.002 ≤ Ωlum h ≤ 0.006 . (2.57)

As a consequence, the luminous matter alone is far from the critical density. Moreover,

comparing with the amount of baryons from Big Bang nucleosynthesis (2.26), we conclude

that Ωlum ¿ ΩB, so there must be a large fraction of baryons that are dark, perhaps in

the form of very dim stars.

Studies applying the virial theorem to cluster dynamics have typically obtained values

ΩM = 0.2±0.155,54. Although it is possible that the global value of M/L differs appreciably

from its value in clusters, extrapolations from small scales do not seem to reach the

critical density56. New techniques to weigh the clusters, including gravitational lensing of

background galaxies and temperature profiles of the X-ray gas, while not yet in perfect

agreement with each other, reach essentially similar conclusions.

Rotation curves of spiral galaxies

The flat rotation curves of spiral galaxies provide the most direct evidence for the existence

of large amounts of dark matter. Spiral galaxies consist of a central bulge and a very thin

disk, stabilized against gravitational collapse by angular momentum conservation, and

surrounded by an approximately spherical halo of dark matter. One can measure the

orbital velocities of objects orbiting around the disk as a function of radius from the

Doppler shifts of their spectral lines. The orbital velocity rose linearly from the center

outward until it reached a typical value of 200 km/s, and then remained flat out to

the largest measured radii. This was completely unexpected since the observed surface

luminosity of the disk falls off exponentially with radius, I(r) = I0 exp(−r/rD), see Ref.35.

Therefore, one would expect that most of the galactic mass is concentrated within a few

disk lengths rD, such that the rotation velocity is determined as in a Keplerian orbit,

vrot = (GM/r)1/2 ∝ r−1/2. No such behaviour is observed. The measured rotation curve

is shown in Fig. 2.3 together with the relative components associated with the disk, the

halo and the gas.

At large radii the dark matter distribution leads to a flat rotation curve. Adding up
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Figura 2.3: The rotation curve of the spiral galaxy NGC 6503, determined by radio

observations of hydrogen gas in the disk36. The dashed line shows the rotation curve

expected from the disk material alone, the dot-dashed line is from the dark matter halo

alone.

all the matter in galactic halos up to maximum radii, one finds Υhalo ≥ 30 h, and therefore

Ωhalo ≥ 0.03− 0.05 . (2.58)

Baryon fraction in clusters

Rather than measuring the mass relative to the luminosity density, which may be different

inside and outside clusters, we can also measure it with respect to the baryon density57,

which is very likely to have the same value in clusters as elsewhere in the universe, simply

because there is no way to segregate the baryons from the dark matter on such large scales.

Most of the baryonic mass is in the hot intracluster gas58. Since the 1960s, when X-ray

telescopes became available, it is known that galaxy clusters are the most powerful X-ray

sources in the sky37. The emission extends over the whole cluster and reveals the existence

of a hot plasma with temperature T ∼ 107−108 K, where X-rays are produced by electron

bremsstrahlung. Assuming the gas to be in hydrostatic equilibrium and applying the virial

theorem one can estimate the total mass in the cluster, giving general agreement (within

a factor of 2) with the virial mass estimates. From these estimates one can calculate the
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baryon fraction of clusters

fBh3/2 = 0.03− 0.08 ⇒ ΩB

ΩM

≈ 0.15 , for h = 0.65 , (2.59)

which together with (2.57) indicates that clusters contain far more baryonic matter in the

form of hot gas than in the form of stars in galaxies.

In fact, the fraction fgas of total mass in this form can be measured either by direct

observation of X-rays from the gas59 or by distortions of the microwave background by

scattering off hot electrons (the Sunyaev-Zeldovich effect).

Assuming this fraction to be representative of the entire universe, and using the Big

Bang nucleosynthesis value of ΩB = 0.05± 0.01, for h = 0.65, we find

ΩM = 0.3± 0.1 (statistical) ± 20% (systematic) . (2.60)

This value is consistent with previous determinations of ΩM.

Structure formation and the matter power spectrum

Finally, the matter density parameter can be extracted from measurements of the power

spectrum of density fluctuations (see for example60).One the most important constraints

on the amount of matter in the universe comes from the present distribution of galaxies.

Gravitational instability increases the primordial density contrast, seen at the last scat-

tering surface as temperature anisotropies, into the present density field responsible for

the large and the small scale structure.

Since the primordial spectrum is very approximately represented by a scale-invariant

Gaussian random field, the best way to present the results of structure formation is

by working with the 2-point correlation function in Fourier space, the so-called power

spectrum. If the reprocessed spectrum of inhomogeneities remains Gaussian, the power

spectrum is all we need to describe the galaxy distribution. Non-Gaussian effects are

expected to arise from the non-linear gravitational collapse of structure, and may be

important at small scales25.

The power spectrum measures the degree of inhomogeneity in the mass distribution

on different scales. It depends upon a few basic ingredientes: a) the primordial spectrum

of inhomogeneities, whether they are Gaussian or non-Gaussian, whether adiabatic (per-

turbations in the energy density) or isocurvature (perturbations in the entropy density),
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whether the primordial spectrum has tilt (deviations from scale-invariance), etc.; b) the

recent creation of inhomogeneities, whether cosmic strings or some other topological de-

fect from an early phase transition are responsible for the formation of structure today;

and c) the cosmic evolution of the inhomogeneity, whether the universe has been dom-

inated by cold or hot dark matter or by a cosmological constant since the beginning of

structure formation, and also depending on the rate of expansion of the universe.

The tools used for the comparison between the observed power spectrum and the

predicted one are very precise N-body numerical simulations and theoretical models that

predict the shape but not the amplitude of the present power spectrum. In simple models

(e.g., with only cold dark matter and baryons, no massive neutrinos), the spectrum can

be fit (once the amplitude is normalized) by a single “shape parameter”, which is found

to be equal to Γ = ΩMh. Observations then yield Γ ∼ 0.25, or ΩM ∼ 0.36. For a more

careful comparison between models and observations, see61.

The observational constraints on the power spectrum have a huge lever arm of mea-

surements at very different scales, mainly from the observed cluster abundance, on 10

Mpc scales, to the CMB fluctuations, on 1000 Mpc scales, which determines the normal-

ization of the spectrum. At present, deep redshift surveys are probing scales between 100

and 1000 Mpc, which should begin to see the turnover corresponding to the peak of the

power spectrum at keq, see Figs. 3.1 and 3.2. The standard CDM model with ΩM = 1,

normalized to the CMB fluctuations on large scales, is inconsistent with the cluster abun-

dance. The power spectra of both a flat model with a cosmological constant or an open

universe with ΩM = 0.3 (defined as ΛCDM and OCDM, respectively) can be normalized

so that they agree with both the CMB and cluster observations. So, at present, these

measurements suggest a low value of ΩM, but with large uncertainties.

2.3.6 The cosmological constant ΩΛ

It has been suspected that a cosmology with an appreciable cosmological constant is the

best fit to what we know about the universe49,50. However, it is only very recently that

there are new observational arguments for a non-zero value. The most compelling ones

are recent evidence that we live in a flat universe, from observations of CMB anisotropies,

together with strong indications of a low mass density universe (ΩM < 1), from the large
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scale distribution of galaxies, clusters and voids, that indicate that some kind of dark

energy must make up the rest of the energy density up to critical, i.e. ΩΛ = 1 − ΩM. In

addition, the discrepancy between the ages of globular clusters and the expansion age of

the universe may be cleanly resolved with Λ 6= 0. Finally, there is growing evidence for

an accelerating universe from observations of distant supernovae 38. I will now discuss the

different arguments one by one.

The Expansion Age problem

This negative pressure would help accelerate the universe and reconcile the expansion

age of the universe with the ages of stars in globular clusters. For the present age of

the universe of t0 = 13 ± 1 Gyr, and the measured rate of expansion, H0 = 70 ± 7

km/s/Mpc, one finds t0H0 = 0.93±0.12 (adding errors in quadrature), which corresponds

to ΩM = 0.05 +0.24
−0.10 for an open universe, marginally consistent with observations of large

scale structure. On the other hand, for a flat universe with a cosmological constant, t0H0 =

0.93 ± 0.12 corresponds to ΩM = 0.34 +0.20
−0.12, which is perfectly compatible with recent

observations. These suggest that we probably live in a flat universe that is accelerating,

dominated today by a vacuum energy density.

Supernovae Ia

The most direct and theory-independent way to measure the cosmological constant would

be to actually determine the value of the scale factor as a function of time.

Astronomers measure distance in terms of the “distance modulus” m −M , where m

is the apparent magnitude of the source and M its absolute magnitude. The distance

modulus is related to the luminosity distance via

m−M = 5 log10[dL(Mpc)] + 25 . (2.61)

Of course, it is easy to measure the apparent magnitude, but notoriously difficult to infer

the absolute magnitude of a distant object. Recently, significant progress has been made

by using Type Ia supernovae as “standard candles”. Supernovae are very bright and can

therefore be detected at high redshifts (z ∼ 1).

By studying the characteristic light curves, of a reasonably large statistical sample,

cosmologists from two competing groups, the Supernova Cosmology Project39 and the
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High-redshift Supernova Project40, are confident that they can infer from their distribution

the spatial curvature and the rate of expansion of the universe. Fig. (2.4) shows the results

for m −M vs. z for the Supernova Cosmology Project. Under the assumption that the

energy density of the universe is dominated by matter and vacuum components, these

data can be converted into limits on ΩM and ΩΛ, as shown in Fig. (2.5).
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Figura 2.4: Hubble diagram for the high redshift supernovae found by the SN Cosmol-

ogy Project. From Ref.39. A similar diagram is found by the High Redshift Supernova

Project40. Both groups conclude that distant supernovae are fainter than expected, and

this could be due to an accelerating universe.

In these observations high redshift type Ia supernovae appear fainter than expected

for either an open (ΩM < 1) or a flat (ΩM = 1) universe, see Fig. 2.4. In fact, the

universe appears to be accelerating instead of decelerating (as was expected from the

general attraction of matter); something seems to be acting as a repulsive force on very

large scales. The most natural explanation for this is the presence of a cosmological

constant, a diffuse vacuum energy that permeates all space and, as explained above, gives

the universe an acceleration that tends to separate gravitationally bound systems from

each other. For a flat universe (ΩM+ΩΛ = 1), the best-fit values for the combined analysis

of both groups39,40, are

Ωflat
M = 0.28 +0.09

−0.08 (1σ statistical) +0.05
−0.04 (identified systematics) , (2.62)

Ωflat
Λ = 0.72 +0.08

−0.09 (1σ statistical) +0.04
−0.05 (identified systematics) . (2.63)
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Figura 2.5: The best-fit confidence regions (68% – 99% c.l.) in the (ΩM, ΩΛ) plane, for

the high redshift supernovae results. Present observations disfavour the Eisntein-de Sitter

model (circle) by several standard deviations. From Ref.39.

The confidence intervals in the ΩM-ΩΛ plane are consistent for the two groups.

Both teams favor a positive cosmological constant, and strongly rule out the traditional

(ΩM, ΩΛ) = (1, 0) favorite universe. They are even inconsistent with an open universe

with zero cosmological constant.

The Cosmic Microwave Background

The discovery by the COBE satellite of temperature anisotropies in the cosmic microwave

background51 inaugurated a new era in the determination of cosmological parameters.

To characterize the temperature fluctuations on the sky, we may decompose them into

spherical harmonics,
∆T

T
=

∑

lm

almYlm(θ, φ) , (2.64)

and express the amount of anisotropy at multipole moment l via the power spectrum,

Cl = 〈|alm|2〉 . (2.65)

Higher multipoles correspond to smaller angular separations on the sky, θ = 180◦/l.

Within any given family of models, Cl vs. l will depend on the parameters specifying the

particular cosmology. Although the case is far from closed, evidence has been mounting in

favor of a specific class of models — those based on Gaussian, adiabatic, nearly scale-free
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perturbations in a universe composed of baryons, radiation, and cold dark matter. (The

inflationary universe scenario typically predicts these kinds of perturbations.)

Figura 2.6: CMB data (binned) and two theoretical curves: the model with a peak at

l ∼ 200 is a flat matter-dominated universe, while the one with a peak at l ∼ 400 is an

open matter-dominated universe. From53.

The location in l of the first “Doppler peak”, an increase in power due to acoustic

oscillations provides one of the most direct handles on the cosmic energy density, one

of the most interesting parameters. The first peak (the one at lowest l) corresponds to

the angular scale subtended by the Hubble radius H−1
CMB at the time when the CMB was

formed (known variously as “decoupling” or “recombination” or “last scattering”). The

angular scale at which we observe this peak is tied to the geometry of the universe: in

a negatively (positively) curved universe, photon paths diverge (converge), leading to a

larger (smaller) apparent angular size as compared to a flat universe. Since the scale H−1
CMB

is set mostly by microphysics, this geometrical effect is dominant, and we can relate the

spatial curvature as characterized by Ω to the observed peak in the CMB spectrum via52

lpeak ∼ 220Ω−1/2 . (2.66)

More details about the spectrum (height of the peak, features of the secondary peaks)

will depend on other cosmological quantities, such as the Hubble constant and the baryon

density.

Figure 2.6 shows a summary of data as of 1998, with various experimental results
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consolidated into bins, along with two theoretical models. It is clear from the figure

that there is good evidence for a peak at approximately lpeak ∼ 200, as predicted in a

spatially-flat universe.

The CMB data provide constraints which are complementary to those obtained using

supernovae; For example, the Boomerang41 and the supernovae approaches yield confi-

dence contours which are nearly orthogonal in the ΩM-ΩΛ plane. The region of overlap is

in the vicinity of (ΩM, ΩΛ) = (0.3, 0.7), which is consistent with other determinations.

2.3.7 The spatial curvature ΩK

As we said, observations of the two-point correlation function of temperature anisotropies

in the CMB provide a crucial test for the spatial curvature of the universe. Even before

the new WMAP data, observations made by the balloon experiment BOOMERANG

suggested that the universe is indeed spatially flat (ΩK = 0) with about 10% accuracy41,

Ω0 = ΩM + ΩΛ = 1.0± 0.1 (95% c.l.) (2.67)

Furthermore, with the launch in 2007 of Planck satellite42 we will be able to determine

Ω0 with 1% accuracy.
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Caṕıtulo 3

A FORMAÇÃO DE ESTRUTURAS

EM GRANDE ESCALA

3.1 A Small Introduction to The Large Structure

Formation

3.1.1 Clusters and Superclusters of Galaxies

Stars have mass in the range roughly 1 to 10M¯. They are found only in galaxies may

be regarded as the basic building blocks of the universe, with masses ranging from maybe

106M¯ (dwarf galaxies) to 1012M¯ (large galaxies like our own). A galaxy typically has a

luminous centre containing nearly all of the stars, and a dark halo of unknown composition

which extends of order 10 times as far and contains of order 10 times as much mass.

Large galaxies like our own have a size of around .1Mpc (including the dark halo)

and are of order 1Mpc apart. Many galaxies belong to gravitationally bound clusters

containing from two to ∼ 1000 galaxies. Clusters of order 10 Mpc in size, are the biggest

gravitationally bound objects in the universe. There do exists, though, ‘superclusters’

with size of order 100 Mpc. Presumably they will become gravitationally bound at some

time in the future. On the scale of 100 Mpc there also seem to be sheetlike and filamentary

structures, as well as voids containing hardly any galaxies.

On scales bigger than 100 Mpc the distribution of matter in the universe is known to

be very homogeneous, both from direct observation of the galaxies and from the isotropy
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of the microwave background. To be precise, if one throws down at random a sphere

with radius R and measures its mass M , then the rms variation ∆M/M is a decreasing

function of R, which is of order 1 at R = 10 Mpc and of order .1 at R = 100 Mpc

The biggest distance we can observe is of order 104 Mpc, the distance that light has

travelled since the Big Bang. The sphere around us with this radius is thus the observable

universe. From the fact that the microwave background anisotropy ∆T/T is of order

10−5, one can deduce that ∆M/M ∼< 10−5 on scales R comparable with the size of the

observable universe.

From observation of the distant universe, the most important finding is that the uni-

verse is definitely evolving. The most dramatic case is that of quasars (active galactic

nuclei), whose abundance per comoving volume peaks at z ∼ 3 or so. Neither quasars

nor any other objects are observed at z ∼> 5. Ordinary galaxies as well as clusters are

observed out to a redshift of order 1 to 2, and they too show signs of evolution.

Ideally, high redshift observations plus an understanding of galactic evolution would

give us information on the value of Ω0.

3.1.2 Baryonic Matter

The ordinary matter ie nuclei and electrons, in the context of cosmology, is usually called

baryonic matter since the baryons (nuclei) vastly outweigh the electrons. From the nu-

cleosynthesis calculation we know that the baryon contribution to Ω0 is given by Eq.2.26.

Thus if Ω0 = 1 there exists non-baryonic dark matter, whose nature I discuss later.

The luminous matter in the universe, consisting of stars and radiation-emitting gas,

accounts for only ΩB ∼ .01. So there is a lot of baryonic dark matter (that constitutes a

few percent of the total amount of dark matter, as we saw before).

In a galaxy, one might expect the baryons to be concentrated more in the central,

luminous part than in the dark halo. The reason is that baryons (the ordinary and

luminous matter in the universe, consisting of stars and radiation-emitting gas) can emit

radiation whereas non-baryonic dark matter interacts too weakly to do so (or it would

not be dark). In consequence baryons can lose more energy, allowing them to settle more

deeply into the galaxy centre.
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3.1.3 Non-Baryonic Dark Matter

One can try to estimate the total amount of matter through its gravitational effect. The

gravitational field in a bound system such as a galaxy or galaxy cluster can be deduced

from the velocities of its components, as evidenced by the Doppler effect. One finds that

each galaxy is surrounded by a dark halo accounting for most of its mass.

On larger scales, where the universe is almost homogeneous and isotropic, one can

observe the small departure from uniform expansion. This defines a ‘peculiar velocity’

field, which is usually called the bulk flow. If one knew the bulk flow v and the density

perturbation δρ/ρ, one could deduce Ω0 through the relation (see ref.46)

∇.v

3H0

= −1

3
(Ω0)

.6 δρ

ρ
(3.1)

A recent study using this method70 indicates that Ω0 > .1. From nucleosynthesis, baryonic

matter contributes Ω0 ' .01 to .09. The observed total Ω0 favoured value, from CMB, is

Ω0 = 1. This means that non-baryonic dark matter seems to be needed.

3.1.4 Hot, Cold and Warm Dark Matter

A massive neutrino species could be a dark matter candidate. A firmer reason for wanting

some neutrino species to have mass comes from the solar neutrino problem. Neutrino dark

matter is called hot, because it remains relativistic until the epoch when most cosmological

scales of interest have entered the horizon (come into causal contact), and therefore cannot

initially undergo gravitational collapse.

Cold dark matter (CDM) is by definition non-relativistic when all cosmological inter-

esting scales enter the horizon. Warm dark matter by definition remains relativistic until

a cosmologically interesting epoch, which is however significantly earlier than the epoch

for neutrino dark matter.

The dark matter candidates are known collectively as WIMPS (weakly interacting

massive particles).

3.1.5 Large-scale structure formation

Although the CMB indicates that the universe in the past was extraordinarily homoge-

neous, we know that the universe today is not exactly homogeneous: we observe galaxies,
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clusters and superclusters on large scales. These structures are expected to arise from

very small primordial inhomogeneities that grow in time via gravitational instability, and

that may have originated from tiny ripples in the metric, as matter fell into their troughs.

Those ripples must have left some trace as temperature anisotropies in the CMB, and

indeed such anisotropies were finally discovered by the COBE satellite in 1992, and they

appear as perturbations in temperature of only one part in 105.

If we define the density contrast as25

δ(~x, a) ≡ ρ(~x, a)− ρ̄(a)

ρ̄(a)
=

∫
d3~k δk(a) ei~k·~x , (3.2)

where ρ̄(a) = ρ0 a−3 is the average cosmic density, we need a theory that will grow a

density contrast with amplitude δ ∼ 10−5 at the last scattering surface (z = 1100) up to

density contrasts of the order of δ ∼ 102 for galaxies at redshifts z ¿ 1, i.e. today. This

is a necessary requirement for any consistent theory of structure formation26.

Furthermore, the anisotropies observed by the COBE satellite correspond to a small-

amplitude scale-invariant primordial power spectrum of inhomogeneities

P (k) = 〈|δk|2〉 ∝ kn , with n = 1 , (3.3)

where the brackets 〈·〉 represent integration over an ensemble of different universe realiza-

tions. These inhomogeneities are like waves in the space-time metric. When matter fell in

the troughs of those waves, it created density perturbations that collapsed gravitationally

to form galaxies and clusters of galaxies, with a spectrum that is also scale invariant.

Such a type of spectrum was proposed in the early 1970s by Edward R. Harrison, and

independently by the Russian cosmologist Yakov B. Zel’dovich, see Ref.27, to explain the

distribution of galaxies and clusters of galaxies on very large scales in our observable

universe.

Most galaxies formed at redshifts of the order of 2− 6; clusters of galaxies formed at

redshifts of order 1, and superclusters are forming now. That is, cosmic structure formed

from the bottom up: from galaxies to clusters to superclusters, and not the other way

around. This fundamental difference is an indication of the type of matter that gave

rise to structure. The observed power spectrum of the galaxy matter distribution from a

selection of deep redshift catalogs can be seen in Fig. 3.1.
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Figura 3.1: The matter power spectrum for clusters of galaxies, from three different cluster

surveys.

We saw that there must be some extra matter beyond the baryonic one (dark since

we don’t see it) to account for its gravitational pull. Whether it is relativistic (hot) or

non-relativistic (cold) could be inferred from observations: relativistic particles tend to

diffuse from one concentration of matter to another, thus transferring energy among them

and preventing the growth of structure on small scales. This is excluded by observations,

so we conclude that most of the matter responsible for structure formation must be cold

(CDM).

Nowadays, the standard theory of structure formation is a cold dark matter model with

a non vanishing cosmological constant in a spatially flat universe. Gravitational collapse

amplifies the density contrast initially through linear growth and later on via non-linear

collapse. In the process, overdense regions decouple from the Hubble expansion to become

bound systems, which start attracting each other to form larger bound structures. In fact,

the largest structures, superclusters, have not yet gone non-linear.

The primordial spectrum (3.3) is reprocessed by gravitational instability after the

universe becomes matter dominated and inhomogeneities can grow. Linear perturbation
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theory shows that the growing mode 1 of small density contrasts go like25,26

δ(a) ∝ a1+3ω =





a2 , a < aeq

a , a > aeq

(3.4)

in the Einstein-de Sitter limit (ω = p/ρ = 1/3 and 0, for radiation and matter, respec-

tively). Since the density contrast at last scattering is of order δ ∼ 10−5, and the scale

factor has grown since then only a factor zdec ∼ 103, one would expect a density contrast

today of order δ0 ∼ 10−2. Instead, we observe structures like galaxies, where δ ∼ 102.

So how can this be possible? The CMB shows anisotropies due to fluctuations in the

baryonic matter component only (to which photons couple, electromagnetically). If there

is an additional matter component that only couples through very weak interactions,

fluctuations in that component could grow as soon as it decoupled from the plasma, well

before photons decoupled from baryons. The reason why baryonic inhomogeneities cannot

grow is because of photon pressure: as baryons collapse towards denser regions, radiation

pressure eventually halts the contraction and sets up acoustic oscillations in the plasma

that prevent the growth of perturbations, until photon decoupling. On the other hand,

a weakly interacting cold dark matter component could start gravitational collapse much

earlier, even before matter-radiation equality, and thus reach the density contrast ampli-

tudes observed today. The resolution of this mismatch is one of the strongest arguments

for the existence of a weakly interacting cold dark matter component of the universe.

How much dark matter there is in the universe can be deduced from the actual power

spectrum (the Fourier transform of the two-point correlation function of density pertur-

bations) of the observed large scale structure. One can decompose the density contrast

in Fourier components, see Eq. (3.2). This is very convenient since in linear perturba-

tion theory individual Fourier components evolve independently. The processed power

spectrum P (k) will have the form:

P (k) ∝





k , k ¿ keq

k−3 , k À keq

(3.5)

This is precisely the shape that large-scale galaxy catalogs are bound to test in the near

future, see Fig. 3.2.

1The decaying modes go like δ(t) ∼ t−1, for all ω.
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Figura 3.2: The power spectrum for cold dark matter (CDM), tilted cold dark matter

(TCDM), hot dark matter (HDM), and mixed hot plus cold dark matter (MDM), nor-

malized to COBE, for large-scale structure formation. From Ref.29.

Since relativistic Hot Dark Matter (HDM) transfer energy between clumps of matter,

they will wipe out small scale perturbations, and this should be seen as a distinctive

signature in the matter power spectra of future galaxy catalogs. On the other hand, non-

relativistic Cold Dark Matter (CDM) allow structure to form on all scales via gravitational

collapse. The dark matter will then pull in the baryons, which will later shine and thus

allow us to see the galaxies.

Naturally, when baryons start to collapse onto dark matter potential wells, they will

convert a large fraction of their potential energy into kinetic energy of protons and elec-

trons, ionizing the medium. As a consequence, we expect to see a large fraction of those

baryons constituting a hot ionized gas surrounding large clusters of galaxies. This is

indeed what is observed, and confirms the general picture of structure formation.
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3.2 The Inflationary Paradigm

3.2.1 Cosmological Inflation

In the 1980s, a new paradigm was put forward by Alan Guth, Linde and others. According

to the inflationary paradigm, the early universe went through a period of exponential

expansion, driven by the approximately constant energy density of a scalar field called

the inflaton, which acts like a repulsive force that makes any two points in space separate

at exponentially large speeds (This does not violate the laws of causality because there is

no information carried along in the expansion, it is simply the stretching of space-time).

Without inflation a given patch either collapses (Ω → ∞) or becomes practically

empty (Ω → 0) within a Hubble time, unless its density parameter is very finely tuned

to the value Ω = 1. In contrast, inflation drives Ω towards 1 starting with an arbitrary

initial value.

This superluminal expansion is capable of explaining the large scale homogeneity of our

observable universe and, in particular, why the microwave background looks so isotropic:

regions separated today by more than 1◦ in the sky were, in fact, in causal contact

before inflation, but were stretched to cosmological distances by the expansion. Any

inhomogeneities present before the tremendous expansion would be washed out. This

explains why photons from supposedly causally disconnected regions have actually the

same spectral distribution with the same temperature.

Inflation is an extremely elegant hypothesis that explains how a region much, much

greater that our own observable universe could have become smooth and flat without

recourse to ad hoc initial conditions. Furthermore, inflation dilutes away any “un-

wanted” relic species that could have remained from early universe phase transitions,

like monopoles, cosmic strings, etc., which are predicted in grand unified theories and

whose energy density could be so large that the universe would have become unstable,

and collapsed, long ago.

3.2.2 The origin of density perturbations

If cosmological inflation made the universe so extremely flat and homogeneous, where

did the galaxies and clusters of galaxies come from? The answer is that the quantum
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fluctuation of the inflaton field, on a given comoving scale, generates a well defined in-

homogeneity and anisotropy, which can be regarded as classical once the scale leaves

the horizon, and can explain the perturbation the inhomogeneity and anisotropy of the

observable universe19.

The quantum fluctuations of the inflaton field are stretched by the exponential ex-

pansion and generate large-scale perturbations in the metric. In the case of inflation, the

inflaton fluctuations induce waves in the space-time metric that can be decomposed into

different wavelengths, all with approximately the same amplitude, that is, corresponding

to a scale-invariant spectrum.

When matter fell in the troughs of these waves, it created density perturbations that

collapsed gravitationally to form galaxies, clusters and superclusters of galaxies, with

a spectrum that is also scale invariant. Such a type of spectrum was proposed in the

early 1970s (before inflation) by Harrison and Zel’dovich27, to explain the distribution

of galaxies and clusters of galaxies on very large scales in our observable universe. One

should also expect to see such ripples in the metric as temperature anisotropies in the

cosmic microwave background.

3.2.3 Acoustic oscillations in the plasma

The physics of the CMB anisotropies is relatively simple. The universe just before recom-

bination is a very tightly coupled fluid, due to the large electromagnetic Thomson cross

section. Photons scatter off charged particles (protons and electrons), and carry energy,

so they feel the gravitational potential associated with the perturbations imprinted in

the metric during inflation. An overdensity of baryons (protons and neutrons) does not

collapse under the effect of gravity until it enters the causal Hubble radius. The pertur-

bation continues to grow until radiation pressure opposes gravity and sets up acoustic

oscillations in the plasma, very similar to sound waves. Since photons scatter off these

baryons, the acoustic oscillations occur also in the photon field and induces a pattern of

peaks in the temperature anisotropies in the sky, at different angular scales.

Metric perturbations of different wavelengths enter the horizon at different times. The

largest wavelengths, of size comparable to our present horizon, are entering now. There

are perturbations with wavelengths comparable to the size of the horizon at the time of
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last scattering, of projected size about 1◦ in the sky today, which entered precisely at

decoupling. And there are perturbations with wavelengths much smaller than the size of

the horizon at last scattering, that entered much earlier than decoupling, all the way to the

time of radiation-matter equality, which have gone through several acoustic oscillations

before last scattering. All these perturbations of different wavelengths leave their imprint

in the CMB anisotropies.

Since photons scatter off baryons, they will also feel the acoustic wave and create a

peak in the correlation function. The height of the peak is proportional to the amount of

baryons: the larger the baryon content of the universe, the higher the peak. The position

of the peak in the power spectrum depends on the geometrical size of the particle horizon

at last scattering (whether the universe is flat, open or closed).

Since the amplitude and position of the primary and secondary peaks are directly

determined by the sound speed (and, hence, the equation of state) and by the geometry

and expansion of the universe, they can be used as a powerful test of the density of baryons

and dark matter, and other cosmological parameters.

The large amount of information encoded in the anisotropies of the microwave back-

ground is the reason why both NASA and the European Space Agency have decided

to launch two independent satellites to measure the CMB temperature and polarization

anisotropies to unprecendented accuracy. The Microwave Anisotropy Probe (WMAP)

and Planck42 (expected in 2007).

3.3 The Evolution of the Density Perturbation

Cosmological perturbation theory develops linear equations for perturbations away from

homogeneity and isotropy. Using it one can follow their growth on a given scale, until they

become big enough for gravitational collapse. On scales ∼> 100 Mpc, where collapse has yet

to occur, cosmological perturbation theory can be used right up to the present epoch. On

smaller scales the only sure-fire way of performing calculations after perturbation theory

fails is to perform numerical simulations, though analytic approximations can provide

some insight.

In the Newtonian regime cosmological perturbation theory has long been recognised to
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be a straightforward application of fluid flow equations. In the relativistic regime, cosmo-

logical perturbations was first discussed by Lifshitz in 1946. His formalism considers the

perturbed Robertson-Walker metric. An alternative formalism, which makes no mention

of the metric perturbation and works instead with relativistic fluid flow equations, was

initiated by Hawking71 in 1966. This approach, which treats the Newtonian and relativis-

tic regimes in a unified way, is becoming increasingly popular72–74 and is the one that I

will use here.

3.3.1 Relativistic fluid flow

We populate the universe with comoving observers, who define physical quantities in their

own region. By definition, the momentum density is zero with respect to a comoving

observer.

A crucial concept is the velocity gradient uij:

uij ≡ ∂ju
i (3.6)

In the limit of homogeneity and isotropy,

uij = Hδij; . (3.7)

Just as for a homogeneous isotropic universe, it is useful to consider ‘comoving hyper-

surfaces’, defined as those orthogonal the fluid flow worldlines. On a given hypersurface,

each quantity ρ, p and H can be split into an average plus a perturbation,

ρ(x, t) = ρ̄(t) + δρ(x, t) (3.8)

p(x, t) = p̄(t) + δp(x, t) (3.9)

H(x, t) = H̄(t) + δH(x, t) (3.10)

Here t is the time coordinate labelling the hypersurfaces, and x = (x1,x2,x3) are space

coordinates. We would like to choose the space coordinates to be comoving coordinates,

related to Cartesian coordinates by ri = axi, with a the average scale factor given by

ȧ/a = H̄. We consider, as a first order approximation, that all perturbations ‘live’ in flat

space.
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Independent scales

Each perturbation f can be written as a Fourier series, defined in a comoving box much

bigger than the observable universe

f(x, t) =
∑

k

fk(t)e
ik.x (3.11)

The beauty of this expansion is that each Fourier mode propagates independently. The

inverse wavenumber a/k is said to define a scale, which is specified by giving its present

value k−1.

Now consider a small density enhancement in the early universe, which is destined to

become, say, a galaxy. If its size is of order r = xa, it is typically made out of Fourier

components with k ∼ x−1. As long as it corresponds to a small density contrast, δρ/ρ ¿ 1,

it will expand with the universe so that its comoving size x remains constant. When its

density contrast becomes of order 1 it will collapse and then its physical size will remain

more or less constant. In both cases, though, the mass of the enhancement remains fixed.

It is therefore useful to associate with each scale k the mass of matter enclosed within a

sphere of comoving radius x = k−1 (taking the universe to be practically homogeneous,

corresponding to the early universe). This mass is

M(x) = 1.16× 1012h2(x/1 Mpc)3M¯. (3.12)

Horizon entry

The ratio of a given comoving scale a/k to the Hubble distance H−1 is equal to aH/k =

ȧ/k, which decreases with time. At the epoch when this ratio falls through 1, the scale is

said to enter the horizon.

Well after horizon entry, the scale is small compared with the Hubble distance, which

means that ordinary physical effects like diffusion, free-streaming and the propagation of

sound waves can operate, with the expansion of the universe playing only a minor role.

Well before horizon entry, the scale is much bigger than the Hubble distance, which means

that causal processes of this kind cannot operate. Instead, as we shall see, each part of

the universe evolves independently.

The scale entering the horizon at a given epoch is given by

k−1 = (aH)−1 =
a0H0

aH
H−1

0 (3.13)
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Except around matter-radiation equality at z ∼ 104 one has

aH ∝ a−1 radiation domination (3.14)

aH ∝ a−1/2 matter domination (3.15)

Thus a crude estimate is that the scale entering the horizon at z ∼< 104 is k−1 ∼ z−1/2H−1
0 ,

making the scale entering the horizon at matter-radiation equality k−1
eq ∼ 10−2H−1

0 , and

that the scale entering the horizon at z ∼> 104 is k−1(z) ∼ 102z−1H−1
0 . An accurate

calculation shows that k−1
eq = 40h−1 Mpc, and that the scale entering the horizon at

photon decoupling is k−1
dec = 90h−1 Mpc. The first scale is crucial for structure formation,

and the second for the cmb anisotropy.

The Differential Equation

Now I derive differential equations for the perturbations. In doing so one has to remember

that the comoving worldlines are not in general geodesics, because of the pressure gradient.

As a result, the proper time interval dτ between a pair of comoving hypersurfaces is

position dependent. Its average may be identified with the coordinate time interval dt,

and one can show (using essentially the Lorentz transformation between nearby observers)

that its variation with position is given by73,19

dτ

dt
=

(
1− δp

ρ + p

)
(3.16)

Along each worldline the rate of change of ρ with respect to proper time τ is given by

energy conservation and has the same form as in the unperturbed case,

dρ

dτ
= −3H(ρ + p) (3.17)

The rate of change of H is given by the Einstein field equation, and to first order receives

just one extra term in the presence of perturbations, coming from the pressure gradient73,

dH

dτ
= −H2 − 4πG

3
(ρ + 3p)− 1

3

∇2δp

ρ + p
(3.18)

This equation is called the Raychaudhuri equation. The operator ∇2 is the Laplacian on

a comoving hypersurface, given in terms of comoving coordinates by

∇2 = a−2δij ∂

∂xi

∂

∂xj
(3.19)
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Perturbing H, ρ and p to first order and using Eq. (3.16) gives the following equations

for the Fourier components

(δρk)̇ = −3(ρ + p)δHk − 3Hδρk (3.20)

(δHk)̇ = −2HδHk − 4πG

3
δρk +

1

3

(
k

a

)2
δpk

ρ + p
(3.21)

Eliminating δHk with Eq. (3.20) gives a second order differential equation for ρk. It is

convenient to use the density contrast δ ≡ δρ
ρ
, and the notation w = p/ρ and c2

s = ṗ/ρ̇, in

terms of which the equation is (see Ref.19):

H−2δ̈k + [2− 3(2w − c2
s)]H

−1δ̇k − 3

2
(1− 6c2

s + 8w − 3w2)δk = −
(

k

aH

)2
δpk

ρ
(3.22)

Note that c2
s = ṗ/ρ̇ is the speed of sound, because p and ρ vary adiabatically in a

homogeneous isotropic universe (no heat flow).

Baryon Evolution: The Jeans Mass

Unlike the CDM density contrast, the baryon density contrast is small at the photon

decoupling epoch because it has been decaying since horizon entry. After decoupling, the

baryons are unaffected by the photons, but two competing forces act on them. First there

is gravity, which tends to make them fall into the potential wells caused by the CDM

density contrast, and second there is their own pressure gradient which tends to keep

them out of the wells.

To rigorously see which effect wins one should generalize Eq. (3.22) to treat the CDM

and the baryons as a pair of uncoupled fluids73,74. In practice the following order of

magnitude estimate is enough. Ignoring the pressure, the time taken for the baryons to

fall into a well is2 of order (Gρ)−1/2. The time taken for the pressure to adjust itself to

prevent the collapse is of order λ/cs where λ = 2π/k is the wavelength and cs is the speed

of sound. Collapse occurs if λ/cs ∼< (Gρ)−1/2 because the pressure cannot act quickly

enough. One concludes that collapse occurs on scales in excess of kJ = (4π2Gρ/c2
s)

1/2.

This is called the Jeans scale and the corresponding mass, given by Eq. (3.12), is called

the Jeans mass.
2If a particle falls from rest towards a point mass M , its velocity at distance r is given by mv2 = 2GM/r

so it falls a significant distance in a time t ∼ r/v ∼ (GM/r3)−1/2. We are replacing the point mass by a

perturbation with size r and density ρ ∼ M/r3.
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The case of zero pressure gradient

The right hand side of Eq. (3.22), which involves the pressure gradient, is negligible after

matter domination because the pressure is negligible.3 It is also negligible well before

horizon entry even during radiation domination, because the gradient is so small.4 When

it is negligible, Eq. (3.22) can be reduced to a first order equation, which has a very simple

interpretation72

The solution hinge on the introduction of a quantity K, defined locally through the

Friedmann equation. General relativity shows that K/a2 is a measure of the curvature

of the comoving hypersurfaces. When the pressure gradient is negligible K is time inde-

pendent. We can say that when the pressure gradient is negligible, each region of space

evolves like a separate Friedmann universe.

On a comoving hypersurface K can be split into and average K̄ plus a perturbation

δK, but the average can be set equal to zero because Ω ' 1. Perturbing the Friedmann

equation therefore gives, to first order,

2HδHk =
8πG

3
δρk − δKk

a2
(3.23)

When δKk is time independent, Eqs. (3.20) and (3.23) give a first order differential

equation for the density contrast,

2H−1

5 + 3w

d

dt

[(
aH

k

)2

δk

]
+

(
aH

k

)2

δk =
2 + 2w

5 + 3w
Rk (3.24)

where w = p/ρ and I have introduced the useful quantity

Rk =
3

2

δKk

k2
(3.25)

Remembering that δK/a2 is the curvature perturbation and that it has units of

(length)−2, we see that Rk = (3/2)(δK/a2)(a2/k2) essentially measures the curvature

perturbation in units of the relevant scale a/k. Another interpretation of R is that it is

essentially the Newtonian gravitational potential caused by δρ.

3Except for the baryons on scales below the Jeans scale, and we assume that the dark matter is cold,

otherwise it is modified by free-streaming.
4Provided that p/ρ is not extremely large, which is ensured by the adiabatic initial condition defined

shortly.
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During any era when w is constant, Eq. (3.24) has the solution (dropping a decaying

mode) (
aH

k

)2

δk =
2 + 2w

5 + 3w
Rk (3.26)

In the radiation dominated era before horizon entry this becomes

(
aH

k

)2

δk =
4

9
Rk(initial) (3.27)

and in the matter dominated era it becomes

(
aH

k

)2

δk =
2

5
Rk(final) (3.28)

As the labels imply I am regarding the value of Rk during the first era as an ‘initial

condition’, which determines its value during the ‘final’ matter dominated era.

For future reference note that during matter domination, H ∝ t−1 ∝ a−3/2 and

δk ∝ a (matter domination) (3.29)

The Cosmological Constant Role On Structure Formation

The introduction of a cosmological constant changes the relationship between the matter

density and expansion rate in a matter-dominated universe, which in turn influences the

growth of large-scale structure.

Perturbations start out very small (of order 10−5 at recombination, from CMB

anisotropies), so linear theory is effective. The fate of the fluctuations is in the hands

of two competing effects: the tendency of self-gravity to make overdense regions collapse,

and the tendency of test particles in the background expansion to move apart. Essentially,

the effect of vacuum energy is to contribute to expansion, thereby acting to suppress the

growth of perturbations46,25.

For sub-Hubble-radius perturbations in a cold dark matter component, a Newtonian

analysis suffices. If the energy density in dynamical matter is dominated by CDM, the

linearized Newtonian evolution equation is

δ̈M + 2
ȧ

a
δ̇M = 4πGρMδM . (3.30)

The second term represents an effective frictional force due to the expansion of the uni-

verse, characterized by a timescale (ȧ/a)−1 = H−1, while the right hand side is a forcing
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term with characteristic timescale (4πGρM)−1/2 ≈ Ω
−1/2
M H−1. Thus, when ΩM ≈ 1, these

effects are in balance and CDM perturbations gradually grow; when ΩM dips appreciably

below unity (as when curvature or vacuum energy begin to dominate), the friction term

becomes more important and perturbation growth effectively ends. In fact (3.30) can be

directly solved47 to yield

δM(a) =
5

2
H2

0ΩM0
ȧ

a

∫ a

0
H−3(a′) da′ , (3.31)

There exist analytic approximations to this formula45, as well as analytic expressions

for flat universes48.

3.3.2 The transfer function

Since perturbations evolve after entering the horizon, the power spectrum will not re-

main constant. For scales entering the horizon well after matter domination (k−1 À
k−1

eq ' 81 Mpc), the metric perturbation has not changed significantly, so that Rk(final) =

Rk(initial). Then Eq. (3.26) determines the final density contrast in terms of the initial

one. On smaller scales, there is a linear transfer function T (k), which may be defined as

19

Rk(final) = T(k) Rk(initial) . (3.32)

An equivalent, and more usual, definition is

a−1δk(final) = AT (k)δk(initial) (3.33)

where the (time dependent) right hand side is evaluated at an arbitrarily chosen time

during the initial era, and the constant A is chosen so that T becomes equal to 1 on large

scales.

Given the adiabatic condition, the transfer function is determined by the physical

processes occurring between horizon entry and matter domination, including: neutrino

free streeming around the epoch of horizon entry; the diffusion of photons around the

same time; the diffusion of baryons along with the photons, and the establishment after

matter domination of a common matter density contrast, as the baryons fall into the

potential wells of cold dark matter. All these effects apply separately, to first order in the

perturbations, to each Fourier component, so that a linear transfer function is produced.
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There are several parameterizations in the literature, but the one which is more widely

used is that of Ref.43,

T (k) =
[
1 +

(
ak + (bk)3/2 + (ck)2

)ν]−1/ν
, ν = 1.13 , (3.34)

a = 6.4 (ΩMh)−1 h−1 Mpc , (3.35)

b = 3.0 (ΩMh)−1 h−1 Mpc , (3.36)

c = 1.7 (ΩMh)−1 h−1 Mpc . (3.37)

The transfer function, which encodes the solution to linear equations, ceases to be

valid when the density contrast becomes of order 1. After that, the highly nonlinear

phenomenon of gravitational collapse takes place.

3.3.3 The spectrum of the density perturbation

In order to discuss the perturbations in a given region of the universe around us, one has

to perform the Fourier expansion Eq. (3.11) in a box much bigger than this region. If the

box is a cube with sides of length L, the possible values of k form a cubic lattice in k

space is 2π/L.

When discussing an isolated system, which is the usual case in physics, one can take

the limit L →∞ in a straightforward way, the coefficients fk tending to a constant limit

which is a smooth function of k. But cosmological perturbations do not fall off at large

distances, and their Fourier coefficients are not smooth functions of k. They are the

spatial analogue of a signal extending over an indefinite period of time, as opposed to an

isolated pulse.

Although the coefficients fk are not smooth functions, it is reasonable to suppose that

|fk|2 is smoothly varying when smeared over a region d3k of k space, which is large enough

to contain many lattice points. I shall denote this average by 〈|fk|2〉. It depends only

on k = |k|, and up to a k dependent factor it is called the spectrum of f , because of the

analogy with a signal. A convenient choice of the factor is to define the spectrum as

Pf ≡
(

Lk

2π

)3

4π〈|fk|2〉 (3.38)

The normalisation is chosen to give a simple formula for the dispersion (root mean square)

of f , which I shall denote by σf . From the Fourier expansion one has σ2
f =

∑ |f 2
k|, and
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since the possible values of k form a cubic lattice with spacing 2π/L the transition from

sum to integral is (
2π

L

)3 ∑

k

−→ 4π
∫

k2dk (3.39)

The dispersion σf is therefore given by

σ2
f ≡ 〈f 2(x)〉 =

∫ ∞

0
Pf (k)

dk

k
(3.40)

with the brackets now denoting the average over position x.

For the density perturbation f = δ it is useful to define the correlation function ξ(r)

by

ξ(r) = 〈f(r + x)f(r)〉 =
∫ ∞

0
Pf (k)

sin(kr)

kr

dk

k
(3.41)

The analogous quantity is useful for other perturbations like the peculiar velocity compo-

nents, though it is not then called the correlation function. For r = 0 it clearly reduces

to σ2
f .

If the phases of the Fourier coefficients are random, f is said to be Gaussian, and then

all of its stochastic properties are determined by its spectrum. In particular the probability

distribution of f , evaluated at randomly chosen points, has a Gaussian profile.

From Eqs. (3.28) and (3.32), the spectrum of the density contrast after matter domi-

nation may be written

Pδ(k) =

(
k

aH

)4

T 2(k)δ2
H(k) (3.42)

The quantity δH specifies the initial spectrum. The standard assumption is that δ2
H is

independent of k. A more general possibility is to consider a spectrum

δ2
H ∝ kn−1 (3.43)

where the exponent n is called the spectral index. The definition of the index as n − 1

instead of n is a historical accident: the standard choice of n = 1 was first advocated by

Harrison (1970) and Zel’dovich (1970) (3.3) on the ground that it is the only one making

the perturbation small on all scales, at the epoch of horizon entry.

3.3.4 The filtered density contrast

At the present epoch the universe is highly inhomogeneous on small scales. In order to use

linear cosmological perturbation theory one must therefore filter out the small scales, by
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smearing each perturbation over a region of size ∼> 100 Mpc. The same is true at epochs

in the relatively recent past, except that the comoving filtering scale goes down. Only in

the truly early universe is the universe (presumably) homogeneous on all relevant scales.

The filtering is done by means of a ‘window function’ W (Rf , r), which is equal to 1

at r = 0 and which falls off rapidly beyond some radius Rf
46. Taking for definiteness the

density contrast, the filtered quantity is

δ(Rf ,x) =
∫

W (Rf , |x′ − x|)δ(x′)d3x′ (3.44)

and its spectrum is

Pδ(Rf , k) =
[
W̃ (Rf , k)/Vf

]2
Pδ(k) (3.45)

where

W̃ (Rf , k) =
∫

e−ik·xW (Rf , r)d
3x (3.46)

and

Vf =
∫

W (Rf , r)d
3x (3.47)

The filtered dispersion is

σ2(Rf ) =
∫ ∞

0

[
W̃ (Rf , k)/Vf

]2
Pδ(k)

dk

k
(3.48)

The quantity Vf is the volume ‘enclosed’ by the filter. It is convenient to define the

associated mass M = ρ0Vf , where ρ0 is the present mass density. One normally uses M

instead of Rf to specify the scale, writing δ(M,x) and σ(M).

The two popular choices are the Gaussian filter

W (Rf , r) = exp(−r2/2R2
f ) (3.49)

Vf = (2π)3/2R3
f (3.50)

W̃ (Rf , k)/Vf = exp(−k2R2
f/2) (3.51)

M = 4.36× 1012h2(Rf/1 Mpc)3M¯ (3.52)

and the top hat filter which smears uniformly over a sphere of radius Rf

W (Rf , r) = θ(r −Rf ) (3.53)

Vf = 4πR3
f/3 (3.54)

W̃ (Rf , k)/Vf = 3

(
sin(kRf )

(kRf )3
− cos(kRf )

(kRf )2

)
(3.55)

M = 1.16× 1012h2(Rf/1 Mpc)3M¯ (3.56)
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The Gaussian filter is the most convenient for theoretical calculations, but the top hat

filter is widely used to as a means of presenting data.

3.3.5 Linear Theory Works

A full comparison of theory with observation requires the use of numerical simulations,

to follow the process of gravitational collapse which occurs on each scale after cosmolog-

ical perturbation theory breaks down. It turns out, though, that the linear theory can

be applied on a wide variety of scales, so that one can obtain powerful constraints on

the parameters by considering it alone. Working from the top down, some of the most

important linear constraints are explained below.

• The large scale cmb anisotropy The WMAP data explores scales of order the size

of the observable universe, say 103 to 104 Mpc.

• The bulk flow Smearing the galaxy peculiar velocities over a sphere of radius tens

of Mpc to get what is called the bulk flow, one should be in the linear regime. In

principle70 one can observe the radial component of the bulk flow, construct the

corresponding potential radially, reconstruct v and finally determine the density

perturbation δρ(x).

• Galaxy cluster number density The average number density n(> M) of clusters with

mass bigger than M ∼ 1015M¯ gives information on a scale of order 10h−1 Mpc.

Within linear theory one can estimate n(> M) by assuming that the matter in

regions of space where δ(M,x) exceeds some critical value δc of order 1 is bound

into objects with mass > M . The fraction of space occupied by such regions is

f(> M) = erfc

(
δc√

2σ(M)

)
(3.57)

From this assumption Press and Schechter derived the formula19

m
dn(> M)

dM
=

〈k2〉
12π2Rf

νe−ν2/2 (3.58)

where ν = δc/σ(M) is the number of standard deviations that δc represents, and

〈k2(M)〉 = σ−2(M)
∫ ∞

0
k2e−k2R2

f Pδ(k)
dk

k
(3.59)
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(This formula includes a more or less unmotivated factor 2). An alternative pre-

scription is to identify each peak in δ(M,x) higher than δc with an object of mass

> M , which gives a roughly similar result. Yet another method, which in principle is

superior, is to run a numerical simulation, which again gives roughly similar results.

• The shape of the galaxy correlation function The galaxy correlation function

Eq. (3.41) can be used to probe the shape of σ(M) on scales between those ex-

plored by the last two items, if the bias factor is taken to be scale independent.

• Quasar number density Given some astrophysics assumptions, the observed quasar

abundance can provide a lower limit on the density contrast at high redshift.
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Caṕıtulo 4

MECÂNICA ESTATÍSTICA NÃO

EXTENSIVA

4.1 INTRODUCTION

As well known, thermodynamics is the basic branch of physics which focuses on the generic

connections between variables (temperature, pressure, volume, energy, entropy and many

others) that play an important role in the description of the macroscopic world. Boltz-

mann and Gibbs provided a magnificent connection of thermodynamics with the micro-

scopic world. This connection, normally referred to as Boltzmann-Gibbs (BG) statistical

mechanics (or simply statistical mechanics since it was basically the only one to be formu-

lated along more than one century), turns out to be the appropriate one for ubiquitous

systems in nature.

Thermodynamics is based on two pillars: energy and entropy. The first one concerns

(dynamical or mechanical) possibilities; the second one concerns the probabilities of those

possibilities. The first one is more basic, and clearly depends on the physical system

(classical, quantum, relativistic, or any other); the second one is more subtle, and reflects

the information upon the physical system.

It was long believed that the microscopic expression of the physical entropy had to be

universal, i.e., system-independent (but dependent of W , the total number of possibilities

of the system). More precisely, it had to be, for all systems
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SBG = −k
W∑

i=1

pi ln pi (4.1)

with the normalization condition
W∑

i=1

pi = 1 . (4.2)

Here pi is the probability for the system to be in the i-th microstate, and k is the Boltz-

mann constant (kB = 1.38×10−23 J/K). Without loss of generality one can also arbitrarily

assume k = 1. If every microstate has the same probability pi = 1/W (equiprobability

assumption) one obtains the famous Boltzmann principle

SBG(pi = 1/W, ∀i) = k ln W . (4.3)

It can be easily shown that entropy (4.1) is nonnegative, concave, extensive and stable75

(or experimentally robust). If A and B are two independent systems in the sense that

pA+B
ij = pA

i pB
j , then we straightforwardly verify that

SBG(A + B) = SBG(A) + SBG(B) . (4.4)

One might naturally expect that the form (4.1) of SBG would be rigorously derived from

microscopic dynamics. However, the difficulty of performing such a program can be seen

from the fact that still today this has not yet been accomplished from first principles.

Consequently (4.1) is in practice a postulate. However, this widespread belief of univer-

sality appears to have no rigorous basis. Indeed, it appears nowadays that the concept

of physical information, and its microscopic expression in terms of probabilities, must be

adapted to each system treated.

Expressions (4.1) and (4.3) are so commonly used because most of the systems whose

thermal properties are studied belong to the type involving (strong) chaos in its micro-

scopic dynamics, i.e., positive Lyapunov exponents, known to yield quick mixing and

eventually ergodicity in phase space. There is no fundamental reason for which the same

expression should necessarily be used for systems involving say a vanishing Lyapunov

spectrum, i.e., for systems exhibiting weak chaos, when the sensitivity to the initial con-

ditions diverges less than exponentially. Indeed, such systems, if isolated, might have

serious difficulties in satisfying the ergodic hypothesis during the observational time of

physical measures.
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It is clear that the above statements about the nonuniversality of the microscopic

expression for the entropy are self-evident. If, however, SBG is not universal, how to

generalize it? The analysis of the structure of the BG theory provides us a metaphor for

formulating this new statistical mechanics; but we are talking of a generalization of the

BG theory, and by no means an alternative to it.

4.2 Central equations of nonextensive statistical me-

chanics

Nonextensive statistical mechanics and thermodynamics were introduced in 198876, and

further developed in 199177 and 1998114, with the aim of extending the domain of ap-

plicability of statistical mechanical to systems where Boltzmann-Gibbs (BG) statistics

and standard thermodynamics present serious difficulties or just plainly fail. Indeed, a

rapidly increasing number of systems are pointed out in the literature for which the usual

functions appearing in BG statistics appear to be violated. Some of these cases are satis-

factorily handled within the formalism we are here addressing (see103 for reviews and78 for

a regularly updated bibliography which includes crucial contributions and clarifications

that many scientists have given along the years).

In this spirit, an entropy, Sq, which generalizes SBG, has been proposed. The entropy

Sq (with S1 = SBG) depends on the index q, a real number to be determined a priori from

the microscopic dynamics. The property chosen to be generalized is extensivity, i.e., Eq.

(4.4).

4.2.1 A metaphor

The simplest ordinary differential equation one might think of is

dy

dx
= 0 , (4.5)

whose solution (with initial condition y(0) = 1) is y = 1. The next simplest differential

equation might be thought to be
dy

dx
= 1 , (4.6)
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whose solution, with the same initial condition, is y = 1 + x. The next one in increasing

complexity that we might wish to consider is

dy

dx
= y , (4.7)

whose solution is y = ex. Its inverse function is

y = ln x , (4.8)

which has the same functional form of the Boltzmann-Gibbs entropy (4.3), and satisfies

the well known additivity property

ln(xAxB) = ln xA + ln xB. (4.9)

A question that might be put is: can we unify all three cases (4.5,4.6,4.7) considered

above? A trivial positive answer would be to consider dy/dx = a + by, and play with

(a, b). Can we unify with only one parameter? The answer still is positive, but this time

out of linearity, namely with
dy

dx
= yq (q ∈ R) , (4.10)

which, for q → −∞, q = 0 and q = 1, reproduces respectively the differential equations

(4.5), (4.6) and (4.7). The solution of (4.10) is given by the q-exponential function

y = [1 + (1− q)x]
1

1−q ≡ ex
q (ex

1 = ex) , (4.11)

whose inverse is the q-logarithm function

y =
x1−q − 1

1− q
≡ lnq x (ln1 x = ln x). (4.12)

This function satisfies the pseudo-additivity property

lnq(xAxB) = lnq xA + lnq xB + (1− q)(lnq xA)(lnq xB) (4.13)

4.2.2 The nonextensive entropy Sq

As we saw, the exponential function ex is generalized into the q-exponential function

ex
q ≡ [1 + (1− q) x]

1
1−q (q ∈ R) . (4.14)
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We can trivially verify that this (nonnegative and monotonically increasing) function (i)

for q → 1 yields ex
1 = ex (∀x), (ii) for q > 1, vanishes as a power-law when x → −∞ and

diverges at x = 1/(q− 1), and (iii) for q < 1, has a cutoff at x = −1/(1− q), below which

it is defined to be identically zero. If x → 0 we have ex
q ∼ 1 + x (∀q).

The inverse function of the q-exponential is the q-logarithm, defined as follows:

lnq x ≡ x1−q − 1

1− q
(q ∈ R) . (4.15)

Of course ln1 x = ln x (∀x). If x → 1 we have lnq x ∼ x− 1 (∀q).

Generalization of the BG entropy

We can rewrite Eq. (4.1) in a slightly different form, namely (with k = 1)

SBG = −
W∑

i=1

pi ln pi =
W∑

i=1

pi ln
1

pi

=

〈
ln

1

pi

〉
, (4.16)

where 〈...〉 ≡ ∑W
i=1(...)pi. The quantity ln(1/pi) is sometimes called surprise or unex-

pectedness. Indeed, pi = 1 corresponds to certainty, hence zero surprise if the expected

event does occur; on the other hand, pi → 0 corresponds to nearly impossibility, hence

infinite surprise if the unexpected event does occur. If we introduce the q-surprise (or

q-unexpectedness) as lnq(1/pi), it is kind of natural to define the following q-entropy

Sq ≡
〈

lnq
1

pi

〉
=

W∑

i=1

pi lnq
1

pi

=
1−∑W

i=1 pq
i

q − 1
(4.17)

The nonextensive entropic form we postulate is

Sq =
1−∑W

i=1 pq
i

q − 1
(

W∑

i=1

pi = 1; q ∈ R) , (4.18)

where W is the total number of microscopic configurations, whose probabilities are {pi}.
The continuous and the quantum expressions of Sq are respectively given by

Sq =
1− ∫

dx [p(x)]q

q − 1
(4.19)

and

Sq =
1− Trρq

q − 1
, (4.20)

where ρ is the matrix density. Unless specifically declared in what follows, we shall be

using the form of Eq. (4.18). It is easy to verify that all its generic properties can be

straightforwardly adapted to both the continuous and quantum cases.

61



Assuming equiprobability (i.e., pi = 1/W ) one obtains straightforwardly

S =
W 1−q − 1

1− q
= lnq W. (4.21)

which is the basis for the microcanonical ensemble. It can be shown that the nonneg-

ative entropy Sq is concave (convex) for q > 0 (q < 0). This property implies thermody-

namic stability. Such a property makes possible for two systems at different temperature

to equilibrate to a common temperature.

Consequently, it is clear that Sq is a generalization of and not an alternative to the

classical entropy, because if q → 1, this entropy reproduces the usual Boltzmann-Gibbs-

Shannon one, namely S1 = −∑W
i=1 pi ln pi.

We may think of q as a biasing parameter: q < 1 privileges rare events, while q > 1

privileges common events. Indeed, p < 1 raised to a power q < 1 yields a value larger

than p, and the relative increase pq/p = pq−1 is a decreasing function of p, i.e., values of

p closer to 0 (rare events) are benefited. Correspondingly, for q > 1, values of p closer to

1 (common events) are privileged. Therefore, the BG theory (i.e., q = 1) is the unbiased

statistics.

If A and B are two independent systems (i.e., pA+B
ij = pA

i pB
j ∀(i, j)), then the pseudo-

additivity of the q-logarithm immediately implies

Sq(A + B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (4.22)

It follows that q = 1, q < 1 and q > 1 respectively correspond to the extensive,

superextensive and subextensive cases (in all cases Sq ≥ 0). It is from this property that

the corresponding generalization of the BG statistical mechanics is often referred to as

nonextensive statistical mechanics.

The Associated Probability

To obtain the probability distribution associated with the relevant stationary state (ther-

mal equilibrium or metaequilibrium) of our system we must optimize the entropic nonex-

tensive form under the following constraints76,114: the norm constraint given by

∑

i

pi = 1 ,
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and the energy constraint generalized as follows

∑
i p

q
i Ei∑

i p
q
i

= Uq ,

where {Ei} is the set of eigenvalues of the Hamiltonian (with specific boundary condi-

tions), and Uq is a fixed and finite number. This optimization yields the generalized

weight

pi =
[1− (1− q)βq(Ei − Uq)]

1/(1−q)

Zq

, (4.23)

where

Zq ≡
∑

j

[1− (1− q)βq(Ej − Uq)]
1/(1−q) ,

and

βq ≡ β∑
j pq

j

,

β being the optimization Lagrange parameter associated with the generalized internal

energy Uq.

This probability distribution corresponds to a maximum (minimum) of Sq for q > 0

(q < 0). For q = 0, the entropy is constant, namely S0 = W − 1, and the distribution

is given by pi = [1 − βq(Ei − U0)]/
∑W

j=1[1 − βq(Ej − U0)] (we recall the cutoff of the

q-exponential function for q < 1, i.e., the states for which 1 − βq(Ei − U0) < 0 do not

contribute).

Equation (4.23) can be rewritten as

pi ∝ [1− (1− q)β′Ei]
1/(1−q) ≡ e−β′Ei

q ,

where β′ is a renormalized inverse “temperature”, and the q-exponential function is defined

as ex
q ≡ [1+(1−q)x]1/(1−q) = 1/[1−(q−1)x]1/(q−1) (with ex

1 = ex). This function replaces,

in a vast number of relations and phenomena, the usual BG factor.

Analogously, if we optimize Sq as given by Eq. (4.19) with the constraints
∫

dx p(x) =

1 and 〈〈x2〉〉q = σ2 (σ > 0), we obtain the q-generalization of the Gaussian distribution,

namely79

pq(x) =
e−β̄x2

q∫
dy e−β̄y2

q

∝ 1

[1 + (q − 1)β̄x2]
1

q−1

(q < 3), (4.24)

(fat-tailed if q > 1, and with a cutoff if q < 1) and where β̄ can be straightforward and

explicitly related to σ. The variance of these distributions is finite if q < 5/3 and diverges
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if 5/3 < q < 3. For q = 2 we have the Lorentzian distribution. For q ≥ 3 the function is

not normalizable, and therefore is unacceptable as a distribution of probabilities.

4.2.3 A remark on other possible generalizations of the Boltzmann-

Gibbs entropy

There have been in the past other generalizations of the BG entropy. The Renyi entropy

is one of them and is defined as follows

SR
q ≡

ln
∑W

i=1 pq
i

1− q
=

ln[1 + (1− q)Sq]

1− q
. (4.25)

Another entropy has been introduced by Landsberg and Vedral112 and independently

by Rajagopal and Abe113. It is sometimes called normalized nonextensive entropy, and is

defined as follows

SN
q ≡ SLV RA

q ≡
1− 1∑W

i=1
pq

i

1− q
=

Sq

1 + (1− q)Sq

. (4.26)

A question arises naturally: Why not using one of these entropies (or even a different

one such as the so called escort entropy SE
q , defined in114,115), instead of Sq, for gener-

alizing BG statistical mechanics? The answer appears to be quite straightforward. SR
q ,

SLV RA
q and SE

q are not concave nor experimentally robust. Neither yield they a finite en-

tropy production for unit time, in contrast with Sq. Moreover, these alternatives do not

possess the suggestive structure that Sq exhibits associated with the Jackson generalized

derivative. Consequently, for thermodynamical purposes, it seems nowadays quite natural

to consider the entropy Sq as the best candidate for generalizing the Boltzmann-Gibbs

entropy.

4.3 Applications in and out from equilibrium

A considerable amount of applications and connections have been advanced in the liter-

ature using, in a variety of manners, the nonextensive formalism. They concern physics,

astrophysics, geophysics, chemistry, biology, mathematics, economics, linguistics, engi-

neering, medicine, physiology, cognitive psychology, sports and others78. The fact that
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the range of applications is so wide probably is deeply related to and reflects the ubiquity

of self-organized criticality80, fractal structures and, ultimately, power laws in nature.

Examples that have been analyzed include re-association in folded proteins81, fluxes

of cosmic rays82, finance and economics83, electron-positron annihilation84,quark-gluon

plasma96, kinetic theory97, classical chaos98, quantum chaos99, quantum entanglement100,

anomalous diffusion101, long-range-interacting many-body classical Hamiltonian systems

(102 and references therein), epilepsy85, linguistics86, nuclear physics87, astrophysics, distri-

butions in music88, urban agglomerations89, internet phenomena90, and others are known

nowadays which in no trivial way accomodate within BG statistical mechanical concepts.

Systems like these have been handled with the functions and concepts which naturally

emerge within nonextensive statistical mechanics76,114,103.

4.4 Aplications in Astrophysics and Cosmology

Connections between dynamics and thermodynamics are far from being completely clar-

ified. For instance, long-range interactions are expected to substantially modify various

usual thermodynamical properties. Enrico Fermi addressed such question in his famous

book Thermodynamics (1936)91.

Laszlo Tisza says in 196192:

From the molecular point of view, additivity and homogeneity can be expected to be

reasonable approximations for systems containing many particles, provided that the in-

tramolecular forces have a short range character.

Finally, from Peter T. Landsberg (1978)93:

The presence of long-range forces causes important amendments to thermodynamics,

some of which are not fully investigated as yet.

In recent papers, also E.G.D. Cohen94 and M. Baranger95 have addressed this question

too. If we put all this together, as well as many other similar statements available in the

literature, we may conclude that physical entropies different from the BG one could exist

which would be the appropriate ones for anomalous systems. Among the anomalies that

we may focus on we include (i) metaequilibrium (metastable) states in large systems in-

volving long range forces between particles, (ii) metaequilibrium states in small systems,
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i.e., whose number of particles is relatively small, say up to 100-200 particles, (iii) glassy

systems, (iv) some classes of dissipative systems, (v) mesoscopic systems with nonmarko-

vian memory, and others which, in one way or another, might violate the usual simple

ergodicity. Such systems might have a multifractal, scale-free or hierarchical structure in

their phase space.

Let us now cite recent applications of the ideas associated with nonextensive sta-

tistical mechanics to phenomena in astronomy and astrophysics, namely the solar neu-

trino deficit106, self-gravitating polytropic systems107–109, peculiar velocities of galaxy

clusters104, the flux of cosmic rays82, and some cosmological effects105.

Polytropic Equilibrium Solutions to the Vlasov-Poisson Equations:

The first physical application of the non-extensive thermostatistical formalism was re-

lated to the study of maximum entropy solutions to the Vlasov-Poisson equations describ-

ing self gravitating N -body systems like galaxies107,108. The maximization of the standard

Boltzmann-Gibbs entropy under the constraints imposed by mass and energy conserva-

tion lead to the isothermal sphere distribution, which has infinite mass and energy110.

In107,108, it was shown that the extremalization of the nonextensive q-entropy under the

same constraints leads to the stellar polytropic sphere distributions which, for a certain

range of the q parameter, are endowed with finite mass and energy, as physically expected.

This constituted the first clue suggesting that the generalized thermostatistical formalism

based on Sq may be of some relevance for the study of systems exhibiting non extensive

thermodynamical properties due to long range interactions.

Peculiar velocities of galaxy clusters

The COBE (Cosmic Background Explorer) satellite measured the peculiar velocities

(difference of velocity with regard to the average expansion of the universe) of some clus-

ters of spiral galaxies. A distribution was found which exhibits a cutoff around 500 Km/s.

The Princeton astrophysical group111 analyzed the distribution of velocities within four

different cosmological models. None of those attempts succeeded in reproducing the ob-

served cutoff, although each of those models involved several free parameters (that were

fixed through a variety of arguments). By assuming within nonextensive statistical me-

chanics, an extremely simplified model as an ideal classical gas, the empirical velocity

distribution was quite satisfactorily matched104. Only two fitting parameters were used,
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namely the scale of velocities and q ' 0.23. In spite of the extreme simplicity of the

model, the fact that the statistics was allowed to change proved its high efficiency.

Cosmology:

Nonextensive statistical mechanics has also been applied to a variety of cosmological

and general relativity problems including the cosmic background radiation in a Robertson-

Walker universe, the dynamics of inflationary cosmologies, the universal density profile

of dark halos, early universe phenomena (e.g., the primordial 4He formation), among

others105.
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Caṕıtulo 5

O MÉTODO DE

PRESS-SCHECHTER

5.1 Introduction

It is widely believed that the structure of the universe observed nowadays, like the clusters

and superclusters of galaxies, has been formed from the gravitational growth of small

amplitude density perturbations in the epoch of matter-radiation decoupling (at redshift

z ∼ 1000).

An important theoretical question in cosmology is how to determine the fraction of

matter in the universe that has formed bounded structures, and what is its distribution in

mass at any given redshift after recombination. The number density of colapsed objects

for a given mass, named the mass function, is a central quantity in analysis of cosmic

structures such clusters of galaxies. The mass function can distinguish easily different

galaxy formation theories, including whether the initial perturbations were Gaussian or

not143. The mass function is applied in a wide range of cosmological problems, like

measures of volumes (eg. galaxy lensing), or determining the normalization of the power

spectrum.

The pioneering work in describing analytically the mass function was done by Press

& Schechter154 (hereafter PS). The PS formalism is simple and presents a good fit to

the observational data129 and numerical simulations results137,169. Nowadays, the PS

formalism is largely adopted to derive the mass function, F(M), of bounded objects in the

observed Universe.
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In their statistical approach PS assume that the initial density field is Gaussian. We

take the initial density field, at a very early time, and smooth it on the scale R. The

evolution of the density field δ in each point is linear, and when this evolved density gets

as large as a threshold δc ∼ 1, then the density at that region becomes non-linear, better

saying, that region becomes gravitationally unstable, and we consider it as a collapsed

(bound) region. The fraction of the bound particles at the mass M, the mass function

F(M), is the probability that the linear density is larger than the threshold δc in the PS

formalism.

The usefulness of the spherical model was emphasised when Press & Schechter consid-

ered smoothing the initial density field to determine the relative abundances of perturba-

tions on different scales154. When combined with the critical overdensity for collapse this

provided a statistical model for the formation of structure in the Universe: smoothing

the fluctuations leads to the masses of collapsed objects, while the spherical perturbation

model gives the epoch of collapse for those perturbations that are sufficiently dense.

Although considering its importance, the PS approach is endowed with a fundamental

difficulty, namely: the mass function has only a half of the correct normalization (there

is a fudge factor 2). In order to correct that, the authors argued that only half of the

bounded mass was counted on their formalism because the under density regions were not

taken correctly into account, and they simply put by hand a factor of 2 in the expression

of F(M). Actually, there are some proposals appearing in the literature accounting for

the fudge factor 2. However, the majority of them, like the peak ansatz and the various

cloud-in-cloud solutions121,151 lacks the analytical simplicity of the original PS formalism.

Some recent development of massive high resolution N-body simulations are suggesting

that the PS approach does not provide an accurate description to the structure formation

problem137. Obviously such a simple model will fail in detail, particularly given the known

complexities of asymmetrical gravitational collapse, and numerical simulations have now

quantified these problems158,135. However PS theory has been successful and still provides

key insight into the processes at work in structure formation.

More recently, inspired by the so-called Tsallis q-nonextensive statistics76,159,140,160,138,189,

we have proposed a simple extension of the PS analytical formalism139, in order to present

better fits to the most recent observational and numerical data of structure formation.
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The basic modification is the adoption of a power law Tsallis distribution for describ-

ing the fluctuations of the density field instead of the Gaussian function assumed by the

standard PS approach. An attractive feature of this new distribution is that the models

are analytically tractable in such a way that a detailed comparison with the PS approach

is immediate. The extended formalism recovers the PS treatment as a special case, and

presents the same simplicity of the standard PS method.

5.2 The Press-Schechter approach

To determine the mass function analytically we need both dynamics and statistics. In the

dynamic ansatz, PS adopted the top-hat spherical model, in which all the cosmological

dependence is contained within the rms density fluctuation, σ(M), smoothed with a top-

hat filter on a scale R3 = 3M/4πρ. In their statistical approach PS assume that the

initial density field is Gaussian. The PS approach take the initial density field, at a

very early time, and smooth it on the scale R. The evolution of the density field δ in

each point is linear, and when this evolved density gets as large as a threshold δc ∼ 1,

then the density at that region becomes non-linear, better saying, that region becomes

gravitationally unstable, and we consider that these high density regions will condense

out as collapsed (bound) objects of mass M at time t. The fraction of the bound particles

at the mass M, F(M), is the probability that the linearly evolved density is larger than the

threshold δc in the PS formalism. The comoving density of bound particles at each mass

scale, say the comoving mass function N(M), is directly related with that fraction F(M).

Considering now the statistical view of the PS approach, we consider that the pri-

mordial density perturbations are Gaussian fluctuations. Thus the phases of the waves of

the density distribution will be random, and the amplitudes of the perturbations can be

described by a gaussian function

P (δ) =
1√

2πσ(M)

exp


− δ2

2σ2
(M)


 , (5.1)

where σ2
(M) ≡ 〈δ2

M〉 is the mean squared fluctuation. By definition, bounded objects are

those whose amplitudes of the density contrast became greater than a critical value (δc)

and, as such, their fraction F(M) at a given cosmological time can be written as142
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F(M) =
∫ ∞

δc

P (δ) dδ =
1√

2πσ(M)

∫ ∞

δc

exp


− δ2

2σ2
(M)


 dδ , (5.2)

and from that it is straightforward to derive the distribution of bound objects with masses

between M and M + dM :

dF(M)

dM
= +

1√
2π

δc

σ2
(M)

(
∂σ(M)

∂M

)
exp


− δ2

c

2σ2
(M)


 . (5.3)

In the linear regime, the mass of the perturbation is M = ρ · V where ρ is the mean

density of the background model. If we divide the mass function of Eq.(5.3) by this

volume V , we obtain finally the spatial density, or comoving number density N(M)dM at

a time t

N(M)dM =

dF(M)

dM
dM

V
= +

ρ

M

1√
2π

δc

σ2
(M)

(
∂σ(M)

∂M

)

· exp


− δ2

c

2σ2
(M)


 dM (5.4)

Now we can see the weaknesses of the PS formalism: the “incomplete” normalization

condition. The quantity dF , integrated over all mass M should give the unity, however,

the result reads ∫ ∞

0
dF =

1

2
. (5.5)

In other words, the PS formalism counts only half of the total bound particles in the

system. As widely known, PS argued that their formalism does not treat the underdense

regions properly (cloud-in-cloud problem). In order to correct that they simply multiply

the resulting expression by two, without any physical reason.

For further reference, we also note that by introducing a new variable, ν = δc/σ(M),

into Eq.(5.3) multiplied by the mass M and the correcting factor 2, one may obtain a

simple expression to the fraction of the critical density contributed by bound structures

of mass M:

Ω(M)PS
=

dF(M)

d(ln M)
=

√
2

π
·
∣∣∣∣∣∣
∂

(
ln σ(M)

)

∂ (ln M)

∣∣∣∣∣∣
ν exp

(
−ν2

2

)
. (5.6)

71



5.3 PS approach with a q-Power Law

Now, instead of Gaussian initial fluctuations, let us consider that the amplitudes are

described by a class of q-parameterized power law distributions76,159,140,160,138

P (δ)PL =
Bq√

2πσ(M)


1− (1− q) ·

(
δ√

2σ(M)

)2



1
(1−q)

, (5.7)

where PL denotes the q-nonextensive “Power Law” in order to distinguish from the PS

approach. The factor Bq is the one-dimensional normalization constant which may assume

the following forms:

a) Bq = (1− q)
1
2

(
3−q
2

) Γ( 1
2
+ 1

(1−q))
Γ
( 1

(1−q))
, (if 0 < q ≤ 1)

b) Bq = (q − 1)
1
2

Γ
( 1

(q−1))
Γ
( 1

(q−1)
− 1

2)
, (if 1 ≤ q < 2)

For all values of q, limq→1 Bq = 1; knowing this information and using a simple math-

ematical definition116

lim
d→0

(1 + d · y)
1
d = exp y (5.8)

we can easily see that

lim
q→1

P (δ)PL =
1√

2πσ(M)

exp


− δ2

2σ2
(M)


 = P (δ)PS. (5.9)

Then we conclude that our approach is reduced to the PS formalism if q → 1.

The fraction F(M) of bound objects (where δ > δc) of a given mass M at a particular

time t will be, in the interval 0 < q ≤ 1,

F(M)PL
=

Bq√
2πσ(M)

·

∫ δmax

δc


1− (1− q) ·

(
δ√

2σ(M)

)2



1
(1−q)

dδ (5.10)

where the limit δmax =
√

2σM/
√

(1− q) is defined by the argument of Eq.(5.7). In the

case q ≥ 1, this cutoff is absent, and we have δmax ≡ ∞.

Regardless of the values of q the bound objects with masses between M and M + dM

reads:

dF(M)PL

dM
= +

Bq√
2π

δc

σ2
(M)

(
∂σ(M)

∂M

)
·

1− (1− q) ·

(
δc√

2σ(M)

)2



1
(1−q)

. (5.11)
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The comoving number density N(M)PL
dM at a time t will be

N(M)PL
dM =

dF(M)PL

dM
dM

V

= +
ρ

M

Bq√
2π

δc

σ2
(M)

(
∂σ(M)

∂M

)
·


1− (1− q) ·

(
δc√

2σ(M)

)2



1
(1−q)

dM. (5.12)

We must to point out that the above functions are also reduced to the PS formalism

if q → 1.

Now we use Eq.(5.11), multiplied by the mass M, with the corrected factor of 2, and

defining ν = δc/σ(M), we find that the fraction of critical density contributed by bound

structures of mass M reads:

Ω(M)PL =
dF(M)

d(ln M)
= Bq

√
2

π

∣∣∣∣∣∣
∂

(
ln σ(M)

)

∂ (ln M)

∣∣∣∣∣∣
ν

[
1− (1− q) · ν2

2

] 1
(1−q)

. (5.13)

As σ(M) ∼ M− (3+n)
6 , and considering the power spectrum index n = 1, we plot in

Fig.(5.1) the curves of the equations (5.6) and (5.13). Note that since
dF(M)

d(ln M)
= M

dF(M)

dM
=

M2N(M)

ρ
, these plots are identical in shape to the multiplicity function. The upper and

bottom solid lines are, respectively, the PS curves with correct normalization (the PS

original result multiplied by 2), and the original PS curve (with the wrong normalization).

All other curves are PL curves with different q-parameters. Note that for log (ν) > 1

we present different behaviors for the “end-tail curves”, for different values of the free

parameter (q), in our PL approach, which contrast to the fixed PS curve; that flexibility

makes the PL approach more suitable to fix nowadays mass-function data139

Note also that for small mass scales (M ≤ M∗), in q ∼ 1
3

the multiplicity function

is always larger than the PS at a constant linear correlation. But as F(M) is unchanged,

to cancel the increase of
dF(M)

dM
at smaller scales,

dF(M)

dM
decreases faster at larger scales

(M ≥ M∗); Our q = 1
3

curve horizontally moves to smaller mass scale compared with the

PS mass function. We see that for q = 0.5, soon we reach M ∼ M∗ the curve begins

to “fall”, for the same reason that the q = 1
3

curve mentioned above; but here
dF(M)

dM

decreases slower than in the q = 1
3

case, so at larger scales the q = 0.5 curve reaches

a greater scale than the first one. Here our q = 0.5 curve moves horizontally to larger
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Figura 5.1: Fraction of critical density contributed by bound structures of mass M. The

upper and lower solid curves are the corrected PS (factor 2), and the uncorrected PS

curves, respectively. The long dashed, dashed and dotted curves are obtained using the

PL distribution. Note that the q-parameter affects considerably the range of larger mass

scales.

mass scales compared with the q = 1
3

curve, but the general amplitude of the multiplicity

function is lower. More we increase the q value, lower the amplitude becomes and more

shifted to larger mass the curve is. As we reach the limit q → 1, at smaller mass scales

(M ≤ M∗), the PL curve tends to lower down its amplitude (always in parallel with

other curves, as expected by our power law behavior) until reach the PS curve (with the

corrected normalization); and at larger scales (M ≥ M∗) the curve tends to shift to larger

masses until also reaches the PS result, as expected in our analytical analysis. The two

dashed lines with q = 0.9 and q = 0.95 show this behavior in detail. Again more we

increase q, more we lower the amplitude and shift the curve to larger masses, as well

showed by the dotted curves with q = 1.1 and q = 1.3.
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5.4 Some Extensions of the PS Approach and Our

PL Method

We saw that the PS method has an intrinsic problem of normalization. Integrating over all

masses M, the quantity dF(M) is equal to 1
2

instead of 1. PS argued that in this formalism

we have not taken into account the underdense regions correctly, and underdense regions

at a time t may become a part of a bound region at a posterior time t + dt, reaching

half of the total mass using the Gaussian statistics. To correct this, PS simply multiply

the result by two, without any physical reason. The correct treatment of the underdense

regions to solve the mystery of the “fudge factor” 2 was named cloud-in-cloud problem.

The PS argument for the “cloud-in-cloud problem” was taken into account by many

authors: the solution of the normalization problem would be obtained taking the un-

derdense regions in the calculation. Peacock & Heavens151 (hereafter PH90) and Bond

et al.121 (hereafter Bond) approached the cloud-in-cloud problem in a rigorous way. In

this treatment small structures can be included into larger collapsing ones, even if their

density has not reached the threshold, and it increases the total collapsed mass fraction.

It is important to note that this treatment rises the value of collapsed objects if we use

different filter functions, but only in the special case of the sharp k-space filter the correct

“fudge factor” of 2 is really recovered by Bond “without needing to cheat”151. This type

of formalism also gives a different shape of the mass function (comparing to the PS mass

function): we have much more low-mass objects than the original PS formula151. We must

also note the lack of simplicity in the PH90 formalism compared to the easy PS one.

In the important work of Bond, the space is continuously filtered by several sharp low

pass filters in k space, and with that assumption the density at any point in space obeys

a random walk as the filtering scale is decreased. We can then use a diffusion equation

to derive the probability P (δ, σ2) that a trajectory lies between δ and δ + dδ when the

variance of the density field is σ2 (see121):

∂P

∂σ2
=

1

2

∂2P

∂δ2

Calculating the probability distribution of trajectories that reach (δ, σ) without ex-

ceeding a critical value δc at smaller σ, will exclude all non-linear systems more massive
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than Mn, whose trajectories crosses δc over a filtering scale kn. The cloud-in-cloud solution

will be well implemented, solving the diffusion equation above at δ = δc:

P =
1√
2πσ

[
exp

(
− δ2

2σ2

)
− exp

(
−(δ − 2δc)

2

2σ2

)]

Integrating the above equation, the mass fraction that collapses into non-linear objects

naturally reaches the same form of the PS solution multiplied by the factor of 2, thus given

the correct normalization. The diffusion solution proposed in Bond also obtain a very good

fit on comparisons with numerical simulations. Unfortunately, that approach works only

for sharp filters in k space. Any other filter will present correlation between steps in the

δ − σ2 trajectories, and the system evolution will only be solved numerically.

Yano, Nagashima & Gouda170 (hereafter YNG) show that the complete cloud-in-cloud

problem was not be considered by PH90 and Bond, because they considered only the

probability for the density fluctuations at one point in the space and neglected the spatial

correlation of the density fluctuations; YNG shows that this spatial correlation effect alters

the PS formalism, even using the sharp k-space filter. Jedamzik134 approached the cloud-

in-cloud problem using the integral equation of the mass function, but again without using

the spatial correlation in his treatment. YNG corrected the Jedamzik work, deriving the

same results as PH90 and Bond for the sharp k-space filter (always without the spatial

correlation) and, using the Jedamzik corrected method and including the effect of spatial

correlation - but only on the sharp k-space filter, YNG derives the new mass function.

Unfortunately, it is very complicated to derive numerically the mass function with this

new formula. This lack of simplicity puts a severe restriction on the YNG formalism,

instead of its completeness.

We saw that the cloud-in-cloud solution doesn’t bring us a simple model to replace

the PS formalism, which is still easy to use and have good fits with a lot of cosmolog-

ical problems. Our PL method, however, is as simple as the PS one, with two great

advantages: first, it presents strong theoretical connection with the nonextensive entropy

(which treats long-range interaction systems, and that is the case of the gravitational

forces involved in the structure formation; better saying, we consider the “correlation ef-

fect” mentioned by YNG in a simple analytical way); second, we have a q free-parameter,

which grants malleability to fit the nowadays mass function data. Essentially we have a
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better parametrization than the PS curves, with a physical motivated distribution func-

tion, which reduces to the original PS case when q tends to 1.

But the mean goal of all cloud-in-cloud solution was to correct the normalization

problem of the PS method. We must to accomplish a complete study of the mass function

normalization to verify if our distribution presents the same problem of the PS method,

and if it does, try to understand why, and yet, what is the dependence of the normalization

condition to the statistical distribution of the primordial density field?

5.5 A Study of the Normalization Problem

Let us now consider the normalization problem in this PL approach. In principle, the

quantity dF , from Eq.(5.11), integrated over all mass M should give the unity. However,

it is easy to check that the integration results

∫ ∞

τ
dF =

1

2
. (5.14)

where τ = 0 in the range 1 ≤ q < 2; but in the range 0 < q ≤ 1 we have a cut-off value in

our function when (1− q) ·
(

δc√
2σ(M)

)2

= 1, so that τ = σmin. The intriguing aspect here

is that the same value of the Gaussian PS approach is obtained.

By analyzing more closely the normalization condition of our approach, we have con-

cluded that the nonextensive distribution does not solve the problem of incomplete nor-

malization present in the Gaussian PS formalism, namely: only half of the mass is also

taken into account when the calculated mass function is normalized. This simple but

intriguing coincidence is the leitmotiv of our study of the normalization problem146. Ba-

sically, we would like to know whether the fudge factor 2 has some degree of universality

within the PS formalism. Due to the generality of the q-statistics (it also includes the

Lorentzian distribution as a particular case), one should be tempted to think that the

normalization problem in the PS approach might be independent of the statistical distri-

bution describing the primordial density fluctuations.

In what follows, by considering some explicit examples, we show that the normalization

of the resulting mass function depends heavily on the initial distribution. In particular, we

found that the mass function is normalized if one assumes that the initial perturbations
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Figura 5.2: Fraction of critical density contributed by bound structures of mass M. In

both panels the upper and lower solid curves are the corrected PS (factor 2), and the

uncorrected PS curves, respectively. The long dashed, dashed and dotted curves in left

panel are obtained using the PL distribution. In the right panel we compare the behavior

using the Burr distribution (the dashed and long dashed curves) with that using the PS

(solid lines) and PL (dotted line) ones.

are described by the so-called Burr distribution regardless of the values assumed by the

arbitrary free parameters.

By working some specific examples, we show that the PS normalization problem

depends, in general, on the adopted class of distribution functions describing the primeval

density perturbations. We focus our attention to the Log-normal and Burr distributions.

The general normalized Log-Normal distribution is defined by:

p(δ) =
1

δ ·B√2π
exp


−1

2

[
log δ − A

B

]2

 . (5.15)

In the above expression the B parameter is a function of the mass. In addition, in

order to simplify all the computations the shift parameter A is chosen to be zero. As one

may check, the mass function now assumes the form

dF(M)Log−Normal

dM
= +

1√
2π

log δc

B2

(
∂B

∂M

)
· exp

(
− 1√

2

log δc

B

)
(5.16)

with
∫∞
0 dF = 1√

π
which is different from 1/2. This means that the normalization problem

in the PS approach depends on the initial distribution. For some particular classes the
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correcting factor may be 2. This happens, for instance, with the nonextensive PL and

Laplace distributions (if we only consider overdense instead of underdense regions; actually

this later result was not discussed here). Let us now discuss the intriguing behavior of

the normalized Burr distribution

p(δ) =


CD

B

(
δ − A

B

)−C−1

1 +

(
δ − A

B

)−C





−D−1

, (5.17)

where 0 < C, D ≤ 100 (see Ref.166). By taking again A = 0, B = B(M), and the

parameters C and D constants we find

dF(M)Burr

dM
= +

CD

B

(
δc

B

)−C (
∂B

∂M

)
·

1 +

(
δc

B

)−C


−D−1

. (5.18)

In this case, it is easy to check that146

∫ ∞

0
dF = 1, (5.19)

regardless of the values assumed by the constants C and D (they cancels out in the

integration process). Note that although presenting more free parameters than the others

distributions considered before, the resulting PS approach based on the Burr distribution

satisfies the normalization condition. This unexpected property suggests that the Burr

distribution may provide a convenient description of the physics behind the structure

formation process. In this case, the fraction of the critical density reads

Ω(M)Burr =
dF(M)

d(ln M)
= CD

∣∣∣∣∣
∂ (ln B)

∂ (ln M)

∣∣∣∣∣ ν
−c

[
1 + ν−c

]−D−1
. (5.20)

In Fig.(5.2) we show the fraction of critical density contributed by bound structures of

mass M. In both panels the upper and lower solid curves are the corrected PS (factor 2),

and the uncorrected PS curves, respectively. The long dashed, dashed and dotted curves

in left panel are obtained using the PL distribution. In the right panel we compare the

behavior using the Burr distribution (the dashed and long dashed curves) with that using

the PS (solid lines) and PL (dotted line) ones. We see clearly that the Burr distribution

is a possible viable function to describe the primordial density field, having the great

advantage of the correct normalization146.

A more detailed study involving physical applications of the Burr distribution,

as a possible non-Gaussian distribution describing the initial density fluctuations, is still
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lacking. Here we limit ourselves to point out its powerful mathematical appeal concerning

the normalization of the dF derived function. Some additional consequences will be

discussed elsewhere.

5.6 Nongaussian effects on the σ8 - Ωm plane

In the last years, the original PS approach starts to fail in fitting very well the new

massive N-body simulation results and the most recent observational data. Particularly

in the case of an x-ray flux-limited sample of galaxy clusters, based on the ROSAT All-

Sky Survey (hereafter HIFLUGCS), referenced in the paper of Reiprich & Boehringer156

(hereafter Reiprich) , we note that using the PS approach with this data we get as best-fit

mass parameter an Ωm equals to 0.12 (which is very low compared with the nowadays

independent CMB results of around 0.27120,163,164), and we have also a σ8 parameter of

0.96, which is very high based in the most up to date WMAP data164.

We already proposed139 an alternative approach to compute the mass function of

galaxy clusters, consisting on a power law distribution (hereafter PL, for “Power Law”),

which parameterizes the PS formalism; simple as PS and having a free parameter q which

could be used to better fit the recent numerical simulated data. We also proposed an study

of the normalization problem146 showing that it dependents of the distribution chosen (as

the Gaussian or our PL one).

We will show that our PL formalism fits very well the HIFLUGCS data allowing at the

same time cosmological parameters compatible with all other independent measurements

in the literature, even taking account of dark energy models127. We will also show that

our PL approach can be useful to constrain cosmological parameters as well.

5.6.1 The Theoretical PS Model used with the HIFLUGCS

Data

A new X-ray selected and X-ray flux-limited galaxy cluster sample is presented. Based on

the ROSAT All-Sky Survey the 63 brightest clusters have been compiled. Gravitational

masses have been determined utilizing intracluster gas density profiles, derived mainly

from ROSAT PSPC pointed observations, and gas temperatures, as published mainly
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from ASCA observations, assuming hydrostatic equilibrium. This sample and an extended

sample of 106 galaxy clusters is used to establish the X-ray luminosity–gravitational mass

relation. From the complete sample the galaxy cluster mass function is determined and

used to constrain the mean cosmic matter density and the amplitude of mass fluctuations.

Having determined the integrated mass as a function of radius, a physically meaningful

fiducial radius for the mass measurement has to be defined. The radii commonly used

are either the Abell radius, r200, or r500. The Abell radius is fixed at rA ≡ 3 h−1
50 Mpc.

The radius r200 (r500) is the radius within which the mean gravitational mass density

〈ρtot〉 = 200 (500) ρc. The critical cosmic matter density is defined as ρc ≡ 3 H2/(8 π G),

where H2 = H2
0 E(z)2 and E(z) = [Ωm(1+z)3+Ωk(1+z)2+ΩΛ]1/2. It has been shown that

a correction for redshift is not necessary for the nearby clusters included in HIFLUGCS128

and we use the zero redshift value for all calculations, i.e. ρc = 4.6975×10−30g cm−3, unless

noted otherwise.

In order to treat clusters of different size in a homogeneous way we determine the

cluster mass at a characteristic density but also give the mass determined formally at

a fixed radius for comparison. Spherical collapse models predict a cluster virial density

〈ρvir〉 ≈ 178 ρc for (Ωm = 1, ΩΛ = 0), so a pragmatic approximation to the virial mass is to

use r200 as the outer boundary. The most accurate results are expected for Mtot(< r500) ≡
M500, but for a comparison to predicted mass functions M200 is the more appropriate

value156.

We use the standard formalism based on the Press–Schechter (PS) prescription to

predict cluster mass functions for given cosmological models (see, e.g.,122). The mass

function is then given by154,121(see, e.g.,157 for a compilation of published extensions of

the PS mass function)

dn(M)

dM
=

√
2

π

ρ̄0

M

δc(z)

σ(M)2

∣∣∣∣∣
dσ(M)

dM

∣∣∣∣∣ exp

(
− δc(z)2

2 σ(M)2

)
. (5.21)

Here M represents the halo (cluster) virial mass and ρ̄0 = 2.7755×1011 Ωm h2
100 M¯ Mpc−3

is the present day mean matter density. The linear overdensity computed at present

δc(z) = δcv(z) D(0) D(z)−1, where the linear overdensity at the time of virialization,

δcv(z), is computed using the spherical collapse model summarized in136, for Ωm = 1

using (A2) and for Ωm < 1 ∧ Ωk = 0 using (A6,7); the linear growth factor D(z) =

2.5 Ωm E(z)
∫∞
z (1+z′) E(z′)−3 dz′ and E(z) has been defined above. As mentioned earlier
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due to the low redshift range spanned by HIFLUGCS , the effect of a redshift correction

is very small and we therefore set z = 0 for all calculations, unless noted otherwise. The

variance of the cosmic mass density fluctuations is

σ(M)2 = σ2
8

∫∞
0 k2+n T (k)2 |W (k R(M))|2 dk∫∞

0 k2+n T (k)2 |W (k 8 h−1
100 Mpc)|2 dk

, (5.22)

where σ8 represents the amplitude of density fluctuations in spheres of radius 8 h−1
100 Mpc.

Recent measurements of the cosmic microwave background (CMB) anisotropies indicate

that the primordial power spectral index, n, has a value close to 1117,133 and is therefore

set to 1, unless noted otherwise. For the transfer function we use the fitting formula for

Cold Dark Matter (CDM) cosmologies provided by118 for q(k) = k/(Γ h100 Mpc−1)

T (k) ≡ T (q(k)) = ln(1 + 2.34q)/(2.34q)

× [1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4 , (5.23)

where the shape parameter is given by (modified to account for a small normalized baryon

density Ωb > 0,165)

Γ = Ωm h100

(
2.7 K

T0

)2

exp


−Ωb −

√
h100

0.5

Ωb

Ωm


 . (5.24)

The temperature of the CMB T0 = 2.726 K147 and Ωb h2
100 = 0.0193123, for the latter

equation and (5.24) h100 = 0.71 has been used149. The comoving filter radius R(M) =

[3M/(4πρ̄0)]
1/3 for the top hat filter function W (x) = 3 (sin x− x cos x)/x3 is adopted in

this analysis, because the HIFLUGCS masses have been determined with a top hat filter,

too. Since the PS recipe as outlined above assumes virial masses based on the spherical

collapse model we use M200 as approximation to the virial mass.

For the modeling to be independent of the precise knowledge of the LX–Mtot relation

the quantitative comparison has been performed using a standard χ2 procedure on the

differential binned mass function given in Fig. 5.3 (rather than using a maximum likelihood

approach on the mass distribution). After identifying the crude position where χ2 is

minimal in a large Ωm–σ8 parameter space region the χ2 values have been calculated

in a fine grid of 200 by 200 Ωm–σ8 values in the range 0.05 ≤ Ωmegam ≤ 0.26 and

0.65 ≤ σ8 ≤ 1.30. A flat cosmic geometry has been assumed, i.e. Ωm + ΩΛ = 1. The

cosmological constant enters the calculation only through δc, however, and therefore has
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Figura 5.3: HIFLUGCS mass function compared to the best fit model mass function with

Ωm = 0.12 and σ8 = 0.96 (solid line). Also shown are the best fit model mass functions

for fixed Ωm = 0.5 (⇒ σ8 = 0.60, dashed line) and Ωm = 1.0 (⇒ σ8 = 0.46, dotted line).

a negligible influence here. The minimum and statistical error ellipses for some standard

confidence levels (c.l.) are given in Fig. 5.4. The tight constraints obtained show that

with HIFLUGCS we can go beyond determining an Ωm–σ8 relation and put limits on Ωm

and σ8 individually. It is found that

Ωm = 0.12+0.06
−0.04 and σ8 = 0.96+0.15

−0.12 (5.25)

(90% c.l. statistical uncertainty for two interesting parameters), indicating a relatively

low value for the density parameter. In Fig. 5.3 we also plot the best fit model mass

functions for given Ωm = 0.5 and Ωm = 1.0 and one notes immediately that these value

pairs give a poorer description of the shape of the mass function.

We have also tested whether or not the recently found deviations of the PS formalism

compared to large N -body simulations130,135 have a significant influence on the results

obtained here. We have compared the best fit PS model (Ωm = 0.12, σ8 = 0.96) to

the model obtained using the ‘universal’ mass function (fit to N -body simulations,135)

for the same parameter values. These two models agree well for M ≤ 1015 h−1
50 M¯.

The differences become larger than the size of the Poissonian error bars (Fig. 5.3) for

83



Figura 5.4: Statistical confidence contours for the χ2 procedure. The cross indicates the

position of the minimum, χ2
min. Ellipses indicate the 68 %, 90%, 95%, and 99% confidence

levels for two interesting parameters, i.e. ∆χ2 ≡ χ2 − χ2
min = 2.30, 4.61, 6.17, and 9.21,

respectively.

M ≥ 2×1015 h−1
50 M¯, in the sense that the Jenkins mass function135 predicts higher cluster

abundances than PS. For larger values of Ωm the differences become comparable to the size

of the error bars at lower masses, e.g., for Ωm = σ8 = 0.5 around M ∼ 5 × 1014 h−1
50 M¯.

To estimate the influence of these differences on the best fit values derived using the

PS mass function, we adjusted the parameter values of the Jenkins model to reproduce

the PS mass function, finding Ωm = 0.15 and σ8 = 0.86. The value for Ωm becomes

slightly larger but the combination of both values is still contained within the 90 % error

ellipse. We therefore conclude that the differences between the model mass functions do

not significantly affect the interpretation of the HIFLUGCS mass function. Moreover we

regard this test as confirmation of the validity of the PS mass function for the accuracy

needed here.

5.6.2 The Power Law Model fitting the HIFLUGCS Data

In Reiprich156 a compilation of the HIFLUGCS data (an x-ray flux limited galaxy cluster

sample based on the ROSAT data, as described before) is accomplished. The mass func-
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tion from this observational data was compared with that of the theoretical PS approach.

Reiprich performs then a standard χ2 procedure and finds the best fit parameters

Ωm = 0.12+0.06
−0.04 and σ8 = 0.96+0.15

−0.12 (5.26)

We see that Ωm is very low, completely out of range, compared with the nowadays

independent CMB results120,163,164, and the σ8 is very high, also out of the limit, based in

the most up to date WMAP data164,

Ωm = 0.234+0.035
−0.035 and σ8 = 0.76+0.05

−0.05 (5.27)

Tabela 5.1: Power Law ΛCDM Model Parameters and 68% Confidence Intervals. The

Three Year fits in this Table assume no SZ contribution, ASZ = 0, to allow direct com-

parision with the First Year results.

Parameter First Year WMAPext Three Year First Year WMAPext Three Year

Mean Mean Mean ML ML ML

100Ωbh
2 2.38+0.13

−0.12 2.32+0.12
−0.11 2.23± 0.08 2.30 2.21 2.23

Ωmh2 0.144+0.016
−0.016 0.134+0.006

−0.006 0.126± 0.009 0.145 0.138 0.128

H0 72+5
−5 73+3

−3 74+3
−3 68 71 73

τ 0.17+0.08
−0.07 0.15+0.07

−0.07 0.093± 0.029 0.10 0.10 0.092

ns 0.99+0.04
−0.04 0.98+0.03

−0.03 0.961± 0.017 0.97 0.96 0.958

Ωm 0.29+0.07
−0.07 0.25+0.03

−0.03 0.234± 0.035 0.32 0.27 0.24

σ8 0.92+0.1
−0.1 0.84+0.06

−0.06 0.76± 0.05 0.88 0.82 0.77

The new WMAP estimations above can be summarized, with other cosmological pa-

rameters, in the table 5.1, from Ref.164.

We perform exactly the same Reiprich χ2 procedure, following the same conditions and

general theoretical framework, but instead of using the PS mass function equation we use

our PL approach (Equation (5.12), were in the term ρ
M

, ρ is the present-day mean matter

density and M is the halo virial mass). Reiprich uses the PS mass function multiplied by
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2 (to correct the normalization), and so we do the same with our PL mass function. As

we have two intervals in our approach ( [−1 < q < 1] and [1 < q < 3] ), the results will be

presented related to each one.

In the [−1 < q < 1] interval, when we fix q = 0.93 and we perform the χ2 test for

Ωm−σ8 parameters we find as best-fit Ωm = 0.109 (even lower than using the PS method)

and σ8 = 1.058, which is higher than the nowadays expected value from CMB data (top

of figure 6.9). As we rise the value of q, we get higher Ωm and lower σ8 as best-fit

parameters (the first 3 panels from top to bottom of fig.6.9), until the maximum interval

limit of q = 1.0, when we obtain the same PS method parameters, as expected (fig.6.9,

bottom panel). As conclusion, the [−1 < q < 1] interval presents even worse cosmological

parameters than using the standard PS method.

Figura 5.5: The [−1 < q < 1] interval. We fix q and we perform a χ2 test for Ωm − σ8

parameters. As we rise the value of q, we get higher Ωm and lower σ8 as best-fit, until

q = 1.0, when we obtain the same PS method result, as expected
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Now we analyze the [1 < q < 3] interval. In the figure 6.10 we fix two different values

of q, one very close to the inferior interval limit (q = 1.03) and the other slightly higher

(q = 1.30), and we perform the χ2 test for the Ωm − σ8 parameters. We note that a

slightly variation on q produces huges variation in the two cosmological parameters, and

more than that, we fixed the physical q interval in the limit [1.03 ≤ q < 1.30]. In the

figure 5.7 we show why our PL method is better than the PS one: in the upper panel,

we see Reiprich results (equivalent to our method for q → 1), and we note that Ωm is

very low here (comparing with independent recent CMB results, as discussed before). As

we rise the value of q, we get higher Ωm and lower σ8 parameters as best-fit, and the

bottom panel show that we can have very good cosmological parameters with the same

observational data, only changing the PS method by our PL approach.

Figura 5.6: The [1 < q < 3] interval. We fix q and we perform a χ2 test in the Ωm − σ8

plane. We fix two different values o q, one very close to the inferior interval limit (q = 1.03)

and the other slightly higher(q = 1.30). We note that a slightly variation on q produces

huges variation in the two cosmological parameters. We fixed the physical q interval in

the limit [1.03 ≤ q < 1.30].

In the figure 5.8; we fix Ωm = 0.20 and we perform a χ2 test in the q − σ8 plane;

as a result we have a transversal and almost flat statistical contour, showing a linear
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Figura 5.7: In the upper panel, we see Reiprich results (equivalent to our method for

q → 1), which have Ωm very low (comparing with recent CMB results).As we rise the

value of q, we get higher Ωm and lower σ8 parameters as best-fit, and the bottom panel

show that we can have very good cosmological parameters with the same observational

data, only changing the PS method by our PL approach.
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Figura 5.8: We fix Ωm and we perform a χ2 test in the q − σ8 plane; as a result we have

a transversal and almost flat statistical contour, showing a linear dependence between q

and σ8. We will see the same behavior in the q − Ωm plane, fixing σ8.

dependence between q and σ8. We will see the same behavior in the q −Ωm plane, fixing

σ8.

As another example that shows how our PL approach is powerful to constrain the

parameters is given in the figure 5.9; we fix σ8 and we perform a χ2 test in the q − Ωm

plane. In the upper panel, for σ8 = 0.70, we get Ωm ∼ 0.20 as best-fit. More we

increase σ8, more we decrease Ωm (middle and bottom panels). Only σ8 ≤ 0.70 gives

Ωm ≥ 0.20 (which is a good value accepted nowadays in independent X-Ray or optical

mass measurements, and also compatible with CMB data).

When we perform a χ2 test over all parameters in our model (q, Ωm and σ8), we find

that with q = 1.1, Ωm = 0.16 and σ8 = 0.82 we have the excellent fit to HIFLUGCS data.

We can see the Ωm−σ8 plane of these best-fit parameters in the second pannel (from top

to bottom) of figure 5.7, and the approximated q − Ωm plane can be seen at the middle

pannel of figure 5.9.

In figure 5.9 we fixed σ8 = 0.70 and we obtain Ωm = 0.20 and q = 0.19 as best-fit

parameters. Only to show how good is this fit applying directly on the HIFLUGCS data,

we show figure 5.10. The triangles are the observational binned X-Ray mass function,
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Figura 5.9: Another example that shows how our PL approach is powerful to constrain

the cosmological parameters. We fix σ8 and we perform a χ2 test in the q−Ωm plane. In

the upper panel, for σ8 = 0.70, we get Ωm ∼ 0.20 as best-fit. More we increase σ8, more

we decrease Ωm (middle and bottom panels).

and the lines are the mass function theoretical models (all them using the HIFLUGCS

database as points and performing a fitting procedure). The solid line is our PL method

with the parameters cited above. The long dashed line is the Reiprich PS procedure

with Ωm = 0.12 and σ8 = 0.96 (and we already discussed that the first parameter is

very lower and the second one slightly higher than the most recent WMAP CMB data).

Only for curiosity, we present the Reiprich PS procedure using our PL best cosmological

parameters, which is seen by the dotted line. We easily see here how our PL method is

flexible regarding the old PS one.

5.6.3 Dark Energy and Structure Formation

Analysis of the distance-redshift relation using high redshift Type Ia supernovae has led to

the discovery that the expansion of the Universe is currently accelerating. This suggests

that the dominant contribution to the present-day energy budget is a component with

equation of state w < −1/3, called “dark energy”. Combining measurements of CMB

fluctuations with measurements of the clustering of present day galaxies favour a flat
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Figura 5.10: The triangles are the observational binned X-Ray mass function, and the

lines are the mass function theoretical models (all them using the HIFLUGCS database

as points and performing a fitting procedure). The solid line is our PL method with

σ8 = 0.70 and Ωm = 0.20. The dotted line is the PS approach with the same parameters.

The long dashed line is the Reiprich results : the PS method with Ωm = 0.12 and σ8 = 0.96

(the first parameter is very lower and the second one slightly higher than the most recent

WMAP CMB data).

91



Universe with ΩM ' 0.3, with the remaining contribution made up of dark energy.

The nature of the dark energy is the source of much debate. Perhaps the most straight-

forward candidate is a positive cosmological constant Λ with equation of state parameter

w = −1. This simple picture forms a special case in a broader class of models where the

dark energy is the manifestation of a scalar field slowly rolling down its potential. In the

limit of a completely flat potential, these models lead to w = −1155.

If the dark energy equation of state only varies slowly with time, then observational

predictions are well approximated by treating w(a) = w as a constant168.

The equation of state for the dark energy does not uniquely define the behaviour

of this component. The formation of structure is also dependent on the sound speed

of the dark energy which limits its clustering properties. In the original formalism for

quintessence125,126, the dark energy component has a high sound speed which means that

it can cluster on the largest scales, but does not cluster on the scales of galaxy clusters

and below.

Consequently, the dark energy only affects the matter power spectrum and the CMB

anisotropies on very large scales. For the special case of a cosmological constant, w = −1,

the clustering of the dark energy is not an issue as the energy density in perturbations

always remains at the background level. Obviously, for w 6= −1, the clustering properties

of the dark energy strongly affect the build-up of structure in the Universe. In particular

for spherical perturbations, the linear growth rate, critical overdensity for collapse, and

details of subsequent behaviour and virialisation are all dependent on this property. In this

section we follow the majority of current literature and only consider a non-clustering dark

energy component. However, we do note that models in which the dark energy clusters

on small scales are being discussed with increasing frequency132,145.

For the variables used in this section, if no dependence is quoted for a given quantity

(e.g. ΩM), it should be assumed to be calculated at present day. If instead explicit

dependence is given (e.g. ΩM(a)), the quantity is assumed to vary with epoch. We

additionally assume that w(a) = w is constant in time.

It is assumed that the dark energy has an equation of state relating its pressure pX

and density ρX given by pX = w(a)ρX . For general w(a), the dynamical expansion of the
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Universe is specified by the Friedmann equation

E2(a) =
H2(a)

H2
0

= ΩMa−3 + ΩKa−2 + ΩXaf(a), (5.28)

where ΩK ≡ (1−ΩM−ΩX) is the curvature constant, H(a) ≡ ȧ/a is the Hubble parameter

with present day value H0. f(a) is calculated by solving the conservation of energy

equation for the dark energy d(ρXa3)/da = −3pXa2 (Ref.126), giving ρX ∝ af(a), where

f(a) =
−3

ln a

∫ ln a

0
[1 + w(a′)]d ln a′. (5.29)

For constant w, f(a) = −3(1 + w). The evolution of the matter density ΩM(a) and dark

energy density ΩX(a) are given by

ΩM(a) =
ΩMa−3

E2(a)
, ΩX(a) =

ΩXaf(a)

E2(a)
. (5.30)

Considering the behaviour of homogeneous spherical perturbations provides one of the

most simple models for the formation of structure in the Universe. The behaviour of an

homogeneous sphere of uniform density can itself be modelled using the same equations

discussed until now. One of the important applications of the spherical perturbation

model is the derivation of the linear growth rate. The application proceeds as follows: We

consider two spheres containing equal amounts of material, one of background material

with radius a, and one of radius ap with a homogeneous change in overdensity. Henceforth

quantities with a subscript p refer to the perturbation, while no subscript relates to the

background. The densities within the spheres are related to their radii, with

ρpa
3
p = ρa3, δ ≡ ρp/ρ− 1, (5.31)

giving, to first order in in δ,

ap = a(1− δ/3). (5.32)

The cosmological equation for both the spherical perturbation and the background is152

1

a

d2a

dt2
= −H2

0

2

[
ΩMa−3 + [1 + 3w(a)]ΩXaf(a)

]
, (5.33)

where a should be replaced by ap in the matter density term for the perturbation. The

dark energy density ρX ∝ af(a), is the same for both the perturbation and the background
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if the dark energy does not cluster. Because of this, substituting Eqns(5.31) & (5.32) into

this equation gives, to first order in δ,

3

2
ΩMH2

0a
−3δ =

d2δ

dt2
+

2

a

da

dt

dδ

dt
. (5.34)

Changing variables from t to a gives

3

2
ΩMa−3δ =

d2δ

da2
E2(a)a2 +

dδ

da

{
2aE2(a)

−a

2

[
ΩMa−3 + [3w(a) + 1]ΩXaf(a)

]}
, (5.35)

which can be further simplified to give

3

2
ΩM(a) =

d2 ln δ

d ln a2
+

(
d ln δ

d ln a

)2

+
d ln δ

d ln a
{1

−1

2
[ΩM(a) + [3w(a) + 1]ΩX(a)]

}
. (5.36)

This is the generalisation of Equation B7 in Ref.167 to non-flat cosmologies, and is valid

for general w(a).

Eq.(5.36) can easily be solved by numerical integration. For Λ cosmologies, the growing

mode solution to this equation is47

D(a) =
5ΩM

2
E(a)

∫ a

0

da′

[a′E(a′)]3
, (5.37)

where E(a) is given by Eq.(5.28). Although this integral can be easily solved numerically,

it is common to use the approximation of Carrol et al.45,

D(a) ' 5ΩM(a)a

2

[
ΩM(a)4/7 − ΩΛ(a)

+

(
1 +

ΩM(a)

2

) (
1 +

ΩΛ(a)

70

)]−1

. (5.38)

A general solution for the growing mode solution in dark energy cosmologies, equivalent

to Eq.(5.37), has yet to be found. However, for flat cosmological models, with constant

w, the solution can be written in terms of the hypergeometric function 2F1
161

D(a) = a 2F1

[
− 1

3w
,
w − 1

2w
, 1− 5

6w
,−a−3w 1− ΩM

ΩM

]
. (5.39)

Writing the growth index as
d ln δ

d ln a
= Ωα

M(a), (5.40)
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Wang and Steinhardt167 use Eq.( 5.36) for the special case of flat cosmologies to give

α ' 3

5− w/(1− w)

+
3

125

(1− w)(1− 3w/2)

(1− 6w/5)3
[1− ΩM(a)] . (5.41)

This led Basilakos119 to extend the approximation of Carrol et al.45 given by Eq.(5.38) to

the case of w 6= −1

D(a) ' 5ΩM(a)a

2
[ΩM(a)α − ΩX(a)

+

(
1 +

ΩM(a)

2

)
(1 + AΩX(a))

]−1

, (5.42)

with α given by Eq.(5.41), and A ' 1.742+3.343w+1.615w2. In Fig. 5.11 we plot the

A values required to match Eq.(5.42) to the true linear growth factor (given by Eq.(5.39)),

for flat cosmological models with 0.1 < ΩM < 0.9 as a function of w (grey lines). The

fit of Basilakos119 is shown by the dashed line. This is a poor fit for w < −1, so instead,

Percival152 propose

A =
−0.28

w + 0.08
− 0.3, (5.43)

shown by the black line in Fig. 5.11.

Eq.(5.43) has been determined by fitting to flat cosmological models with 0.1 < ΩM <

0.9. For non-flat models, the approximation of Eq.(5.42) remains a good fit. The fitting

formula fails for ΩM << 0.1, but for ΩM > 0.1, the maximum error (with 0 < ΩX < 1)

is 3.8% for w = −4/3, 2.6% for w = −1 and 5.1% for w = −2/3. For comparison, the

fitting formula of Carrol et al.45 given by Eq.(5.38) is accurate to 2.1% for w = −1 over

this range of ΩM .

We now will show the critical overdensity for collapse of homogeneous spherical pertur-

bations at present day in a homogeneous dark energy background. The method adopted

is a development of that in Ref.153, where the critical overdensity in Λ cosmologies was

calculated. Solution schemes for an Einstein-de Sitter cosmology, for open cosmologies

and for flat Λ cosmologies were summarised in Ref.136.

We consider again two spheres containing equal amounts of material: one of back-

ground material with radius a, and one of radius ap with a homogeneous change in over-

density.
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Figura 5.11: Plot showing the true value of A in Eq. 5.42 as a function of w for 9 flat

cosmologies with ΩM evenly spread between 0.1 and 0.9 (grey lines). For comparison we

plot the fitting formula of119 (dashed line) and for Eq. 5.43 (black line).

If ΩΛ = 0, for an Einstein-de Sitter cosmology, the critical overdensity for collapse at

present day reduces to

δEdS ≡ 3

20
(12π)2/3 ' 1.686, (5.44)

which was first derived by131.

The evolution of the critical overdensity for collapse δc(a), is usually defined as follows:

for a cosmological model with parameters ΩM & ΩX , δc(a) gives the overdensity for a

perturbation that collapses at scale factor a, normalised at present day. For example if

we had a density field (and associated power spectrum) normalised at present day, then

δc(a) (where a does not necessarily equal 1) relates to spherical perturbations in this

density field that collapse at scale factor a. δc is the particular case for perturbations

that collapse at present day: perturbations that collapse earlier obviously have to be

significantly more overdense.

The rather weak evolution of the critical overdensity as a function of cosmological

model, means that the linear growth factor can be used to approximate δc(a): If δc is

constant along a particular cosmological track then the evolution of δc(a) is purely driven

by D(a)−1(Ref.152). The only change in δc(a) between two collapse times is caused by the
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Figura 5.12: Plot showing the predicted mass function calculated using the fitting formula

of Sheth & Tormen158 calculated for ΩM = 0.3, ΩX = 0.7 for three different values of w,

and at three epochs corresponding to a = 1/3, 1/2, 1. Because the power spectrum is

normalized at present day, and δc is only weakly dependent on cosmology, then there is

little difference between the predicted mass functions for a = 1. As we go further back in

time the difference becomes more severe because of the differing linear growth factors.

change in overall normalisation of the field. The most obvious choice for the normalisation

is δEdS, so the approximation will be correct in the limit as a → 0, given152

δc(a) ' D0

D(a)
δEdS. (5.45)

The error in using the Einstein-de Sitter critical overdensity is of the same order as

the error in the approximation of using the fitting formula of Eq.(5.42).

Ma et al.144 considered the effect of quintessence on the mass transfer function. They

provided fitting formulae for the ratio between the quintessence and Λ cosmologies. How-

ever, if the dark energy only clusters on very large scales, the transfer function is only

altered on these scales. If the power spectrum is normalized to σ8 (the rms density fluc-

tuation on scales of 8 h Mpc−1), then the scales usually of interest are not affected141.

To demonstrate the effect of the dark energy equation of state on the mass function,

Percival152 ploted the cumulative mass function N(> M), calculated using the numerical

fit of Sheth & Tormen158 for 3 different cosmologies and 3 different epochs in Fig. 5.12.
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The critical overdensity for collapse for w = −2/3,−1 & −4/3 and ΩX = 0.7 was then

calculated for a = 1/3, 1/2, 1, corresponding to redshifts z = 2, 1, 0. As expected, because

the critical overdensity for collapse is only weakly dependent on cosmological parameters,

at a = 1 (the epoch at which the power spectrum is normalized) we see very little differ-

ence in the predicted mass functions for different cosmologies. If the normalization of the

power spectrum had been constrained at a different epoch (for example by CMB fluctu-

ations), then this would not be correct. The evolution of the mass function is strongly

dependent on w because of the effect on the evolution of δc(a) through the linear growth

factor. Consequently, determining the mass function at redshifts other than that used to

normalize the power spectrum offers a stronger possibility of measuring w(a).

We expect to study the dark energy in the structure formation applying observational

data in the process. We use then the same PS formalism using the HIFLUGCS X-Ray

data already presented in the section 5.6.1, but with the evolution of critical density given

by Eq.(5.45), so accounting for the dark energy inside the PS approach. We summarize

our results in Fig. 5.13.

One of our goals in the near future is to accomplish a meaningful and detailed anal-

ysis of the dark energy in the structure formation process, using the Eq.(5.45) for the

evolution of critical density, and applying a PS method with our PL distribution on the

observational data of the HIFLUGCS X-Ray catalog, as showed in the section 5.6.2. The

intrinsic problem of this procedure is the high number of free parameters, as the w in

the dark energy equation of state and the q parameter of our PL distribution. But a de-

tailed and comparative study could broke the possible degenerecencies in the cosmological

parameters.
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Figura 5.13: We use the PS formalism with the HIFLUGCS X-Ray data already presented

in the section 5.6.1, but with the evolution of critical density given by Eq.(5.45), so

accounting for the dark energy inside the PS approach.
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Caṕıtulo 6

COSMOLOGIA NÃO-EXTENSIVA

E TRATAMENTOS DE DADOS

6.1 Bremsstrahlung from a Nonextensive Maxwellian

Gas

Clusters of galaxies are the most massive bound systems in the Universe. They are

luminous X-ray sources, with X-ray luminosity ranging from 1043−1046 ergs−1, and typical

sizes of 1 − 3 Mpc. For this reason, they are fair samples of the universe, and represent

well properties like mass and baryon fractions of the universe171,223,199. The great volumes

of space between galaxies in clusters of galaxies are filled with a hot, diffuse plasma, with

typical temperatures of T ∼ 107 − 108 K. The X-ray emission of the intracluster medium

(ICM) gas is primarily caused by Bremsstrahlung (free-free radiation).

Nowadays, there are increasing difficulties when we try to fit observational data with

pure thermal bremsstrahlung models. With temperatures above 20 KeV, the X-ray spec-

trum show an excess that is not fitted by the thermal bremsstrahlung (Coma, Abell 2199

and others clusters), but have been fitted by power-law spectra, compelling to the investi-

gation of alternatives to X-ray spectra models177,175,178. The physical origin of these tails,

however, is not well known until now176,174.

Several nonthermal bremmstrahlung mechanisms in clusters of galaxies has been stud-

ied: Liang and collaborators182 proposed that the synchrotron-emitting relativistic elec-

trons are accelerated in situ from the vast pool of thermal electrons producing a popula-
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tion of suprathermal electrons responsible for the excess of hard X-ray emission through

bremsstrahlung; Timokhin et al.185 have suggest a new model assuming that the “non-

thermal” excess is due to synchrotron radiation of ultra-relativistic (multi-TeV) electrons

of “photonic” origin; Dogiel173 show that in the case of in-situ acceleration of particles

from the thermal pool, the hard X-rays in the range of Beppo-SAX observations (30-80

keV) are generated by bremsstrahlung radiation of thermal particles with the Maxwellian

spectrum distorted by the acceleration; Enβlin et al.176 believe that their origin could be

due to an inverse-Compton (IC) emission by relativistic electrons.

Nonextensive effects in the fields of thermodynamics and statistical mechanics has

been invoked as a possible generalization of entropy for the systems when the standard

approach is not valid93,181. We saw in Chapter 4 that, inspired on such problems, Tsallis76

proposed a remarkable q-parameterized nonextensive entropic expression which reduces

to the extensive Gibbs-Jaynes-Shannon entropy in the limiting case q = 1. We also saw in

Chapiter 4 that the generalized entropy indicate possibilities of association with systems

presenting long range interactions (Coulombian and gravitational fields for which the

additivity of the entropy is not applied), or presenting long duration memory or phase

space with fractal structure. Nowadays a lot of work in cosmology treats the nonextensive

approach as a real and even better possibility to many phenomena139,180. Recent efforts

on the fundaments of kinetic theory of the q-nonextensive statistics proposed by Tsallis

lead to an equilibrium velocity distribution of the form159,97

fo(v) = Bq

[
1− (1− q)

mv2

2kBT

]1−q

. (6.1)

This is a thermal distribution, whose main effect at the level of the distribution function

is to replace the standard Gaussian form by a power law. For q < 1, the distribution

function (6.1) exhibits a thermal cutoff on the maximum value allowed for the velocity

of the particles, which is given by vmax =
√

2kBT/m(q − 1). The quantity Bq is a q-

dependent normalization constant and can be expressed in terms of Gamma-function by

Bq =





(1− q)1/2(5−3q
2

)(3−q
2

)

×Γ(1/2+1/(1−q)
Γ(1/(1−q))

( m
2πkBT

)3/2 if 1
3

< q ≤ 1,

(q − 1)3/2 Γ(1/(q−1))
Γ(1/(q−1)−3/2)

( m
2πkBT

)3/2 if q ≥ 1 ,

(6.2)
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where m is a mass, kB is the Boltzmann constant and T is the temperature.

In principle, the q-nonextensive formalism may be very important for systems endowed

with long range interactions as usually happens in astrophysics and plasma physics.

In this context, our aim is to extend the treatment of the bremsstrahlung emission

for the nonextensive Maxwellian gas and derive important expressions in terms of sim-

ple algebraic functions which we hope will be very helpful to better fit the nowadays

observational data.

The radiation due to the acceleration of a charge in the Coulomb field of another

charge is called Bremsstrahlung emission. The classical formulas derived to explain such

emission must to be extended by quantum corrections, known as Gaunt factors (gff ), for

a full understanding of the process. We treat the nonrelativistic Bremsstrahlung, so the

total emission per unit time per unit volume per unit frequency range is

dW

dV dtdω
=

16πe6

3
√

3c3m2v
neniZ

2gff (v, ω), (6.3)

where ne and ni are the electron and ion densities (respectively), m and e are the electron

rest mass and module charge, Ze defines the ion charge, and v and c are the electron and

light speed, respectively.

6.1.1 Maxwell-Boltzmann Thermal Bremsstrahlung Emission

To derive the thermal Bremsstrahlung formulae we average the single-speed equation (6.3)

over a thermal distribution of speeds. The probability dP that a particle has velocity in

the velocity range dv3 is usually the Maxwellian

dP α exp
(−E

kT

)
dv3 = exp

(−mv2

2kT

)
dv3. (6.4)

Considering an isotropic distribution of velocities (dv3 = 4πv2dv), the probability that

a particle presents a speed in the speed range dv is

dP α v2 exp

(−mv2

2kT

)
dv, (6.5)

and since the incident electron velocity must be large enough to at least a photon of

energy hν be created
(
vmin =

[
2hν
m

]1/2
)
, we have finally the thermal Bremsstrahlung using

a Maxwell-Boltzmann distribution:
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dW (T, ω)

dV dtdω
=

∫∞
vmin

(
dW(v,ω)

dV dtdω

)
v2 exp

(
−mv2

2kT

)
dv

∫∞
0 v2 exp

(
−mv2

2kT

)
dv

. (6.6)

Using ω = 2πν, the result of the upper expression gives

dW (T, ν)

dV dtdν
=


25πe6

3mc3

(
2π

3km

) 1
2

T
1
2 Z2neni


 · exp

(−hν

kT

)
· 〈gff〉 , (6.7)

where the averaged Gaunt factor 〈gff〉 is

〈gff〉 =
∫ ∞

E=hν
gff (E,ν) exp

(− [E − hν]

kT

)
dE

kT
. (6.8)

Using the relation E ′ = E − hν we reach an easier integrable expression for 〈gff〉 :

〈gff〉 =
∫ ∞

E′=0
gff (E′+hν,ν) exp

(−E ′

kT

)
dE ′

kT
. (6.9)

For the sake of simplicity, we will consider since now the quantity

L =


25πe6

3mc3

(
2π

3km

) 1
2

T
1
2 Z2neni


 . (6.10)

6.1.2 Nonextensive Thermal Bremsstrahlung Emission

As we said before, we have several problems to fit nowadays observational data of

Bremsstrahlung emission only using the thermal Bremsstrahlung formulae with the

Maxwellian (6.7). We also saw that many non-thermal spectra have been proposed to

fit well the data. In this work we want to show that we could possibly fit these data, in

the pure thermal Bremsstrahlung emission, if we use the nonextensive Tsallis distribution

instead of the Maxwellian one. But to compare these two distributions, we must first to

show the new set of formulas obtained in the nonextensive case.

So, considering an isotropic distribution of velocities, the probability that a particle

presents a speed in the range dv is

(dP )PL α v2

[
1− (1− q)

mv2

2kT

] 1
(1−q)

dv.

Therefore the thermal Bremsstrahlung using the nonextensive Tsallis distribution can

be derived as follows
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(
dW (T, ω)

dV dtdω

)

PL

=

∫ α
vmin

(
dW(v,ω)

dV dtdω

)
v2

[
1− (1− q) mv2

2kT

] 1
(1−q) dv

∫ α
0 v2

[
1− (1− q) mv2

2kT

] 1
(1−q) dv

, (6.11)

where vmin =
√

2hν
m

, and the subscript “PL” means “Power Law” distribution.

The nonextensive distribution presents a particularity: the upper integral limit α of

equation (6.11) tends to ∞ when the free parameter q is greater than 1 (α → ∞ when

q > 1); but α also presents a cut-off for
[

1
3

< q < 1
]
, where the quantity (1− q) mv2

2kT
equals

the unity, better saying, when α = vcut−off =
√

2kT
m(1−q)

.

Solving the equation (6.11) and using ω = 2πν, we have

(
dW (T, ν)

dV dtdν

)

PL

= L · F(q) ·
[
1− (1− q)

hν

kT

] 1
(1−q)

+1

· 〈gff〉PL , (6.12)

where L is the same of the equation (6.10); F(q) is a function of the free q-parameter so

that

Fq =





(
1
4

)
(1− q)

1
2 (5− 3q) (3− q)

Γ( 1
1−q

+ 1
2)

Γ( 1
1−q )

if 1/3 < q ≤ 1,

(q − 1)
3
2

Γ( 1
q−1)

Γ( 1
q−1

− 3
2)

if q ≥ 1 ,

(6.13)

and the averaged Gaunt factor 〈gff〉PL is

〈gff〉PL =
∫ γ

0
gff · [1− (1− q) x]

1
(1−q) dx, (6.14)

where the upper integral limit γ tends to ∞ for q > 1 and have a cut-off when γ = 1
(1−q)

for [−1 < q < 1]. For q > 1, there is also an analitical limit of mathematical validity of

the formulas when q = 5
3

(∼ 1.7), so we must consider the analitical treatment in the

segment [1 < q < 1.7] in this case.

A peculiar characteristic of the nonextensive distribution is that, in the limit q → 1, we

retrieve the Maxwell distribution function. So we can consider such power-law distribution

as an extension of the classical Maxwellian one, and the parameter q as a mesure of the

non-extensivity of the system. We also have:

lim
q→1

(
dW (T, ν)

dV dtdν

)

PL

=

(
dW (T, ν)

dV dtdν

)

Maxwellian

(6.15)
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Figura 6.1: Plot from Novikov184,183, showing different regions for the Gaunt factor.

6.1.3 Averaged Gaunt Factors

We present now an extensive derivation of all averaged Gaunt factors to five regions of

Fig.(6.1), from Refs.184,183. For each region of interest we have classical or quantum ap-

proximations which lead to a particular formulae of gff , which, calculated inside equations

(6.8) and (6.14), gives the Maxwellian and Nonextensive averaged Gaunt factors 〈gff〉 for

that specific region.

Below we show the region, the gff formulae and the derived 〈gff〉 and 〈gff〉PL:

1. “Large-Angle Tail Region” and “Large-Angle Region” (gff ' 1):

(a) 〈gff〉 = 1.

(b) 〈gff〉PL (q>1 and 1/3<q<1) = 1
2−q

.
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2. “Small-Angle UP Region”
(
gff =

√
3

π
ln

[
4 · 1

2
mv2

hν

])
:

(a) 〈gff〉 =
√

3
π

ln
[

4kT
hνξ

]
.

(b) 〈gff〉PL (q>1) =
(

1
2−q

) √
3

π

{
ln

[
4kT
hνξ

]
+ ln

(
1

q−1

)
−Ψ

(
2−q
q−1

)}
.

(c) 〈gff〉PL (1/3<q<1) =
(

1
2−q

) √
3

π

{
ln

[
4kT
hνξ

]
+ ln

(
1

1−q

)
−Ψ

(
3−2q
1−q

)}
.

3. “Small-Angle Classical Region”

(
gff =

√
3

π
ln

[
2
ξ

(
1
2
mv2

hν

) (
1
2
mv2

Z2Ry

) 1
2

])
:

(a) 〈gff〉 =
√

3
π

ln
[

4

ξ
5
2

(
kT
hν

) (
kT

Z2Ry

) 1
2

]
.

(b) 〈gff〉PL (q>1) =
(

1
2−q

) √
3

π

{
ln

[
4

ξ
5
2

(
kT
hν

) (
kT

Z2Ry

) 1
2

]
+ 3

2
ln

(
1

q−1

)
− 3

2
Ψ

(
2−q
q−1

)}
.

(c) 〈gff〉PL (1/3<q<1) =
(

1
2−q

) √
3

π

{
ln

[
4

ξ
5
2

(
kT
hν

) (
kT

Z2Ry

) 1
2

]
+ 3

2
ln

(
1

1−q

)
− 3

2
Ψ

(
3−2q
1−q

)}
.

4. “Small-Angle U.P. Tail Region - I”
(
gff =

√
3

π
ln

(
vi+vf

vi−vf

))
:

(a) 〈gff〉 =
(

3
π

kT
hν

) 1
2 .

(b) 〈gff〉PL (q>1) =
(

3
π

kT
hν

) 1
2 (q − 1)−3/2 Γ( 1

q−1
− 3

2)
Γ( 1

q−1)
.

(c) 〈gff〉PL (1/3<q<1) =
(

3
π

kT
hν

) 1
2 4

(1−q)1/2(5−3q)(3−q)

Γ( 1
1−q )

Γ( 1
1−q

+ 1
2)

.

5. “Small-Angle U.P. Tail Region - II”
(
gff ∼ 2

√
3

π

[
1− exp

(
−2π

√
Z2Ry

hν

)])
:

(a) 〈gff〉 = 2
(
12Z2Ry

hν

) 1
2
.

(b) 〈gff〉PL (q>1) and (1/3<q<1) = 2
(
12Z2Ry

hν

) 1
2 1

(2−q)
,

where ξ = exp (C), C being the Euler Constant (Ref.179):

C = −
∫ ∞

0
ln t · exp (−t) dt = 0.577..., (6.16)

Ψ (x) is the Euler Psi function of x, and the Rydberg energy Ry = 13.6 eV is the energy

unit.
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Figura 6.2: Thermal Bremsstrahlung emission of the “Large-Angle” and the “Large-Angle

Tail” region. We obtain the solid line using the Maxwellian distribution, and the other

lines using our Power Law one with different q parameters. We can easily observe the

flexibility of the Power Law free q-parameter after the log
(

hν
KT

)
= 1 limit.

6.1.4 Analysis

Considering the results from equations (6.7) and (6.12), and taking the L constant value

as in equation (6.10), we obtain equations relating the thermal Bremsstrahlung emission

spectrum versus the frequency ν as follows:

(
dW(T,ν)

dV dtdν

)

L
= 〈gff〉 · exp

(−hν

kT

)
(6.17)

(
dW(T,ν)

dV dtdν

)
PL

L
= F(q) · 〈gff〉PL ·

[
1− (1− q)

hν

kT

] 1
(1−q)

+1

(6.18)

where 〈gff〉 and 〈gff〉PL were previously obtained in section 6.1.3 for each region of Fig.

6.1, and F(q) is a q-dependent function given by equation (6.13).

Using equations (6.17) and (6.18) we plot the figures 6.2, 6.3 and 6.4, in order to

compare the behavior of the Maxwellian and the Nonextensive distributions under the

Bremsstrahlung thermal emission model.
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Figura 6.3: Same explanation as Fig.(6.2), but for the “Small-Angle UP” region.

In the figure 6.2 we see the thermal Bremsstrahlung emission of the “Large-Angle” and

the “Large-Angle Tail” region. The solid line presents the Maxwellian behavior, which

is almost constant until log
(

hν
KT

)
= 1, and after that it falls faster to greater log

(
hν
KT

)

values, but at these same values the nowadays observational data show higher values

of log
[(

dW(T,ν)

dV dtdν

)
/L

]
, and these data continue the tail to even higher values of log

(
hν
KT

)
.

It is very clear that the pure Maxwellian thermal Bremsstrahlung emission cannot fit

well these data. But note the Nonextensive distribution behavior at the same figure: the

log
[(

dW(T,ν)

dV dtdν

)
PL

/L
]

values are also constant until log
(

hν
KT

)
= 1 (and are aproximately the

same of the Maxwellian case); so we can conclude that, where the Maxwellian case explains

well the observational data, so our distribution does. The nonextensive emission presents,

however, a free q parameter, which plays an important role after the log
(

hν
KT

)
= 1 limit;

after that limit, for q < 1 values the curves falls even faster than the Maxellian one,

and so these parameters presents even worst fits to the data; but for q > 1 the curves

presents higher emission values and “smoother falls” when compared to the Maxwellian

curve. So in our nonextensive thermal emission framework, for q > 1 values we expect

better fits to nowadays observational data, without assuming any non-thermal emissions

or non-physical power-law adjustments.
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Figura 6.4: The behavior of the Thermal Bremsstrahlung Emission in the “Small-Angle

Classical” region, using the Maxwellian and our PL distribution, for different gamma2 =
(

kT
Z2Ry

)
values.
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Figura 6.5: The behavior of the averaged Gaunt Factor in the “Small-Angle Classical”

region, using only our PL distribution, for different q parameter values. Each curve is

plotted using a different gamma2 =
(

kT
Z2Ry

)
value. We can easily see that our nonextensive

method presents the same averaged Gaunt Factor behavior as using the classical method;

better saying, we can also use the same approximations in the Gaunt Factor, which is of

the order of a unity, even for a large range of q parameter values.

In Fig. 6.3 we see the same explanation as in the Fig. 6.2 for the “Small-Angle UP”

region; but here we note that the tail is not so prononciated as in the “Large-Angle”

and the “Large-Angle Tail” region of Fig. 6.2. In Fig. 6.4 we present the behavior of

the thermal Bremsstrahlung emission in the “Small-Angle Classical” region, using the

Maxwellian and our PL distribution, for different gamma2 =
(

kT
Z2Ry

)
values (the curves

are cut-off in the limit of numerical treatment).

Finally, in Fig. 6.5 we show the behavior of the averaged Gaunt Factor in the “Small-

Angle Classical” region, using only our PL distribution, for different q parameter values.

Each curve is plotted using a different gamma2 =
(

kT
Z2Ry

)
value. Note that in the left-

bottom panel we see the same behavior as using the Maxwellian distribution, because our

PL one turns to a Maxwellian when q tends to 1. We can easily see that our nonextensive

110



method presents the same averaged Gaunt Factor behavior as using the classical method;

better saying, we can also use the same approximations in the Gaunt Factor, which is of

the order of a unity, even for a large range of q parameter values.

6.2 Nonextensivitty in the Plasma Probe

We investigate the consequences of a nonextensive q-distribution function in a plasma

probe in the presence of an external field of force possessing a potential V (r). We show

that this statistics explains the plasma probe data very well for a given q parameter,

covering a region of data never explained theoretically by the classic Boltzmann-Gibbs

(BG) statistics. This result will improve the plasma diagnostic and give us a better

knowledge of several plasma treatments of materials.

6.2.1 Maxwellian velocity distribution

As widely known, the Maxwellian velocity distribution is

f(v)BG = no

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
, (6.19)

where m is the mass of the particles, T is the temperature and n0 is the particle number

density in the absence of the external force field.

As we known, a classical gas under steady state conditions and immersed in a con-

servative force field, F = −∇U(r), is described by a distribution function that differs

from the Maxwellian velocity distribution by an extra exponential factor involving the

potential energy. In this case, the total equilibrium distribution function reads

f(r, v) = no

(
m

2πkBT

)3/2

exp

(
−

1
2
mv2 + U(r)

kBT

)
, (6.20)

where m is the mass of the particles, kB is the Boltzmann constant, T is the temperature

and n0 is the particle number density in the absence of the external force field. In addition,

since this distribution function is normalized, it is easy to see that the number density is

given by

n(r) = n0 exp

[
−U(r)

kBT

]
, (6.21)
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where the factor, exp[−U(r)/kBT ], which is responsible for the inhomogeneity of f(r, v),

is usually called the Boltzmann factor. Expression (6.20) follows naturally from an inte-

gration of the collisionless Boltzmann’s equation

∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f

∂v
= 0, (6.22)

when stationary conditions are adopted along with the assumption that the total distri-

bution can be factored

f(r, v) = f0(v)χ(r), (6.23)

where f0(v) represents the Maxwell equilibrium distribution function, and χ(r) is a scalar

function of r. As one may show, after a simple normalization, the resulting expression for

χ(r) is exactly the Boltzmann factor for the potential energy of the external field, namely:

χ(r) = exp

[
−U(r)

kBT

]
, (6.24)

and combining this result with equation (6.23) the Boltzmann stationary distribution

(6.20) is readily obtained.

6.2.2 Power Law velocity distribution

On the other hand, recent efforts on the kinetic foundations of the q-nonextensive statistics

proposed by Tsallis76 lead to an equilibrium velocity distribution of the form159

f0(v) = Bq

[
1− (1− q)

mv2

2kBT

] 1
1−q

. (6.25)

The equation (6.25) reduces to the Maxwellian result in the limit q = 1. This is a thermal

distribution, whose main effect at the level of the distribution function is to replace the

standard Gaussian form by a power law. For q < 1, the distribution function exhibits

a thermal cutoff on the maximum value allowed for the velocity of the particles, which

is given by vmax =
√

2kBT/m(q − 1). The quantity Bq is a q-dependent normalization

constant and can be expressed in terms of Gamma-function by

1. Bq = (1− q)1/2
(

5−3q
2

) (
3−q
2

)
· Γ(1/2+1/(1−q))

Γ(1/(1−q))

(
m

2πkBT

)3/2
, if 1/3 < q < 1.

2. Bq = (q − 1)3/2 Γ(1/(q−1))
Γ(1/(q−1)−3/2)

(
m

2πkBT

)3/2
, if q > 1.
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The q-parameter quantifies the nonadditivity (nonextensivity) property of the associated

gas entropy, responsible to replace the standard Gaussian form by a power law.

The BG statistics is valid only for sufficiently short-range interactions. It fails when

gravitational or unscreened Coulombian fields are present, and that is precisely the case

of a plasma. We must to note that several experimental works on surface and coatings

technology (plasma sputtering deposition, hollow cathode probe techniques, ion-beam

sputtering in collision cascade statistics etc.) point out a severe difference between the

plasma data obtained and the theoretical expectation (using the BG statistics)186–188;

Based upon these evidences, and also based on many recent theoretical work about this

subject139,146 we must infer that a plasma probe will describe better the behavior of the

system with a nonextensive statistics.

Let us now consider a spatially inhomogeneous dilute gas supposed in equilibrium

at temperature T . It is immersed in a conservative external field in such a way that

f(r, v)d3vd3r is the number of particles with velocity lying within a volume element d3v

about v and positions lying within a volume element d3r around r. The stationary

Boltzmann equation can be rewritten as

v.∇rf − 1

m
∇rU.∇vf = 0. (6.26)

Using the functions q-exp and q-log, eq(f), lnq(f), defined by

eq(f) = [1 + (1− q)f ]1/1−q, (6.27)

lnq f =
f 1−q − 1

1− q
(6.28)

(note that in the limit q → 1 we recover the exponential and logarithm functions), we

obtain the complete q-distribution function in the presence of an external field189

f(r, v) = Bq

[
1− (1− q)

(
mv2

2kBT
+

U(r)

kBT

)]1/(1−q)

≡ Bqeq(−E/kBT ), (6.29)

where E is the total energy of the particles. The particle number density, n(r) =
∫

f(r,v)d3v, also becomes a function of the position given by

n(r) = n0

[
1− (1− q)

U(r)

kBT

](5−3q)/2(1−q)

≡ n0[eq(−U/kBT )]
5−3q

2 , (6.30)

and as should be expected, in the extensive limit (q → 1), the standard exponential

Maxwellian expressions for f(r, v) and n(r) are readily recovered.
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6.2.3 The Plasma Probe - Maxwellian Case

An approximate expression for the magnitude of the electron current density, away from

the region of saturation, can be obtained from Eq.(6.21) as

Je = Je0 exp

[
eφ

kBT e

]
, (6.31)

were Je0 is the electron current density when the electric potential is zero and φ is the

electric potential. When φ is negative the ions reaching the plasma sheath continue to

fall into the negative potential of the probe, and we have a constant ion current density

(Ji) in the negative potential region. So the probe current density when φ < 0 is

Jp = Je0 exp

[
eφ

kBT e

]
− Ji. (6.32)

If we take the logarithm on both sides of Eq.(6.32) we get

ln (Jp + Ji) = ln (Je0) +

(
1

TBG [ev]

)
φ. (6.33)

If we plot ln (Jp + Ji) as a function of φ, this curve has a straight-line section corre-

sponding to the probe potential less than the plasma potential (this region is believed to

be well described by this BG statistics used until here), followed by a slope, and then a

region where the plasma potential dominates and cannot be described by the BG theory.

The problem is that experimentally the first section contains noises that interfere in our

data, troubling the diagnostic of the plasma system. With the nonextensive statistics we

will show that we can describe the plasma behavior of the second section of this curve,

allowing a better knowledge of the system as a whole. As a last remark, note that we can

obtain the BG temperature TeBG from the slope of this same curve, using the derivative

of Eq.(6.33):

TBG =

(
d ln (Jp + Ji)

dφ

)−1

. (6.34)

6.2.4 The Plasma Probe - Power Law Case

Using the same procedure, we can derive the nonextensive (hereafter PL, from “Power

Law”) electron current density from Eq.(6.30). So the PL probe current density when
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φ < 0 is

Jp = Je0

[
1 + (1− q)

eφ

kBT e

](5−3q)/2(1−q)

− Ji, (6.35)

and again applying the logarithm on both sides we have

ln (Jp + Ji) = ln (Je0) +

(
5− 3q

2 (1− q)

)
ln

(
1 + (1− q)

1

TPL [ev]

)
φ. (6.36)

We can easily see an evident relation between TPL and TBG deriving Eq.(6.36), if we

consider that eφ ¿ kBTe. So

TPL =
(

5− 3q

2

)
· TBG. (6.37)

With Eq.(6.37) and knowing that the PL q-parameter is limited as [1/3 ≤ q < 1] if

q < 1 and [1 < q < 2] if q > 1, then

0 <
∆T

TBG

< 1.5. (6.38)

which provides, certainly, theoretical conclusions yet to be massively tested experimen-

tally.

6.2.5 The Density of Electrons

We focus now on the derivation of the density of electrons for the nonextensive approach,

and we compare it with the classical one.

The particle current density (or particle flux) is defined as the number of particles

passing through a given surface, per unit area and per unit time. Since we assume that

the average velocity is zero, the flux will be also zero. In this case, it is of interest to

consider only the flux of particles that cross the surface element from the same side, due

to their random motions. Using spherical coordinates we can derive the particle flux as190

F = π
∫ ∞

0
f(v) · v3dv (6.39)

If we use the Maxwellian velocity distribution 6.19 in Eq.(6.39) we obtain

FBG = no

(
kBT

2πm

)1/2

(6.40)
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Since the Maxwellian distribution is isotropic, Eq.(6.40) applies to any direction inside

the gas. Note that the random particle flux is inversely proportional to the square root

of the particle mass, so the plasma electron density is therefore much larger than that for

ions, and this property plays a very important role in the interaction of a plasma with a

material body immersed in it190.

If we use, instead, the nonextensive distribution in the interval 1/3 < q < 1 of Eq.(6.25)

with the correspondent normalization, we read

Fq = FBG ·
(

5− 3q

2

) (
3− q

2

) (
1

3− 2q

) (
1

2− q

)
(1− q)1/2

Γ
(

1
2

+ 1
1−q

)

Γ
(

1
1−q

) (6.41)

We can therefore easily see that Fq tends to FBG in the limit q → 1. When we calcule

the particle flux using the nonextensive distribution in the interval q > 1 we have

Fq = FBG ·
(

1

q − 1

)1/2 Γ
(

1
q−1

− 2
)

Γ
(

1
q−1

− 3
2

) (6.42)

which also tends to FBG if
(

1
q−1

)
À 3/2 in the limit q → 1.

From the probe current density (Eqs. (6.32) and (6.35)) we have Je0 ,the electron

current density when the electric potential is zero. So that

Je0 = e · F (6.43)

were F is FBG for the Maxwellian distribution, and Fq for the nonextensive one. Each

particle flux is in function of the no quantity, which is the electron number density in

the unperturbed plasma region. We can then derive the electron number density for the

Maxwell distribution as

noBG =
Je0

e

(
2πme

kBTe

)1/2

(6.44)

and using the same procedure we derive the electron number density for the nonextensive

distribution in the interval 1/3 < q < 1 :

noq = noBG ·
(

2

5− 3q

) (
2

3− q

)
(3− 2q) (2− q)

(
1

1− q

)1/2 Γ
(

1
1−q

)

Γ
(

1
2

+ 1
1−q

) (6.45)
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and using the nonextensive distribution in the interval q > 1 we have

noq = noBG · (q − 1)1/2
Γ

(
1

q−1
− 3

2

)

Γ
(

1
q−1

− 2
) (6.46)

Figura 6.6: The BG (Boltzmann-Gibbs) and the PL (Power Law, nonextensive) results

for the electron density, where we fix the Je0 value (Je0 = 0.792 Ampères), in function of

the electron temperature. In the q > 1 interval.

6.2.6 The Results

The electron temperature are obtained by the probe data using Eqs. (6.34) and (6.37).

With this temperature we can quantify the electron density of the plasma using Eqs.

(6.44), (6.45) and (6.46). In the Fig. 6.6 and Fig. 6.7 we can see the BG (Boltzmann-

Gibbs) and the PL (Power Law, nonextensive) results for the electron density, where we

fix the Je0 value (Je0 = 0.792 Ampères), in function of the electron temperature (the

correction of Eq.(6.37) for the PL temperatures are performed in all PL curves). In Fig.

6.6 we see the curves for q > 1 (were an upper limit of q ∼= 1.5 is obtained from the

mathematical derivation of Eq.(6.42)), although in Fig. 6.7 we see PL curves in the

1/3 < q < 1 interval.
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Figura 6.7: The BG (Boltzmann-Gibbs) and the PL (Power Law, nonextensive) results

for the electron density, where we fix the Je0 value (Je0 = 0.792 Ampères), in function of

the electron temperature.In the 1/3 < q < 1 interval.
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In the Fig. 6.8 we show comparisons between the plasma probe data and the theoretical

behavior of the BG and the PL curves, varying the q parameter of this last one. The thick

solid line is the BG prediction of Eq.(6.33); we see that in both panels we must to shift

up the BG curve by the same factor to effectively compare the curve to the experimental

data. The shifted BG curve is shown as a thick dashed line. All the thin lines are PL

curves with different q parameter, which goes from q = 1.01 to q = 1.6 in the bottom-up

direction (after q = 1.65 we cease to obtain results). We note in both panels that the

shifted BG curve fits well the straight line before the slope of the data curve (were the

probe potential is less than the plasma potential, so attracting more ions; the velocity and

collisions of the particles in this region makes the kinetics surpass the plasma behavior) ,

but it is completely unable of fit any data points in the region after the slope, were the

plasma behavior is stronger. The PL curves show in both panels that with a q ∼ 1.6 we

can describe all data points in the after-slope region (and, as a bonus, without need to

shift the curve as we must to do with the BG one).

In the Fig. 6.9 we show essentially the same, but now we note that in the top panel

the PL curve at q = 1.6 begins to be unable to do a good description of the data behavior

after the slope, although in the bottom panel we see that the PL curve cannot describe

the data at all, and we note that the BG curve fits very well the data (discounting the

fact that we must to use the shift up procedure here again, and worse, the shift parameter

is different of the one used in Fig. 6.8). But the behavior of both theoretical curves is

physically expected. The distance of the probe from the cathode in the top panel puts

the probe in the limit of the plasma sheath that surrounds the basis (were the material is

treated); the distance of the probe in the bottom panel is even more closer to the basis,

completely immersed in the cathode plasma sheath (that surrounds the basis and also

the sample treated). In both panels the plasma behavior is overcame by the kinetic of

the present particles (in the bottom panel we can easily see that the plasma behavior is

completely overwhelmed by the random movement presented by the local particles, and

we already know that the BG theory is very effective in such kind of strong-chaos regime).

So in Fig. 6.8 and Fig. 6.9 , we show the expected theoretical behavior of both curves.

In Fig.6.9 ,inside the sheath of the basis, the random displacement of the particles is

characteristic of strong chaos (short-range colisional interactions, better explained by the
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Figura 6.8: Probe outside the plasma sheath of the cathode. Region of long-range Coulom-

bian interactions, weak chaos, plasma behavior. The PL curve with q=1.6 explains very

well the region after the slope of the data probe (were the probe potential is overwhelmed

by the plasma potential). This PL curve describes the region outside the sheath of the

probe, where we can detect the real macroscopic variables of the plasma (temperature,

pressure, density, etc.), and we do not need to shift the curve, as we must to do in the

BG case.
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Figura 6.9: Probe inside the plasma sheath of the cathode. Region of short-range colisional

interactions, strong chaos, random kinetic behavior. The BG curve explains very well the

data, specially in the bottom panel, were the probe is completely immersed in the cathode

sheath region (But the shift up parameter is needed in both panels, with different values

in each one).
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Figura 6.10: The first column shows the region outside the cathode sheath. The second

column shows the region inside the sheath.
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BG theory), so the BG curve describes better the data here; while in Fig. 6.8 we see

that outside the sheath of the basis, were the plasma behavior is stronger (long-range

Coulombian interactions of particles), the PL curve at q = 1.6 is better in explain the

data.

The bonus of using the PL curve over the BG one is that we can describe the region

outside the sheath of the probe, where we can detect the real macroscopic variables of

the plasma (temperature, pressure, density, etc.), and we do not need to shift the curve

to obtain good results in this case. So the nonextensive theory can indeed improve the

diagnostic of the plasma probe technic.

6.3 New Cosmological Constraints using Dark En-

ergy, X-Ray Gas Mass Fractions and SNe Ia

Recent measurements are suggesting that we live in a flat Universe and that its present

accelerating stage is driven by a dark energy component whose equation of state may

evolve in time. Assuming two different parameterizations for the function ω(z), we con-

strain their free parameters from a joint analysis involving measurements from X-Ray

luminosity of galaxy clusters and SNe type Ia data.

A cosmological constant (Λ), the oldest and by far the most natural candidate for

dark energy, faces some theoretical difficulties. The most puzzling of them is the so-

called cosmological constant problem: the present cosmological upper bound, Λo/8πG ∼
10−47GeV 4, differs from natural theoretical expectations from quantum field theory, ∼
1071GeV 4, by more than 100 orders of magnitude. Actually, such a problem has also

inspired many scenarios driven by a Λ(t) or a time varying decaying vacuum with constant

equation of state191. Among the remaining candidates to dark energy, the most promising

ones lead to a time dependent equation of state (EOS), usually associated to a dynamical

scalar field component. Such quintessence models may also parameterically be represented

by an equation of state, ω(z), as proposed by Cooray and Huterer192, as well as the

one discussed by Linder195, and, independently, by Padmanabhan and Choudhury196.

In principle, the time variation of the EOS parameter, ω(z) ≡ p/ρ, may allow a clear

distinction between a cosmological constant model and the one driven by a rolling scalar
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field.

Maor et al.193 and Weller and Albrecht194, have also observed that in order to constrain

the evolution of the EOS with SNe observations, it is necessary to use a tight prior on

the mean matter density of the Universe. A natural way to circumvent such a problem

is to consider the constraints on the density parameter from measurements of the X-Ray

luminosity of galaxy clusters together in a joint analysis involving SNe Ia observations.

We investigate the cosmological implications from X-ray of galaxy clusters and SNe

data by considering two different classes of EOS evolving with redshift. In the first scenario

(hereafter Model 1), the EOS parameter is defined by192

Model 1 : ω(z) = ωo + ω1z, (6.47)

whereas in the second, the EOS parameter reads195,196

Model 2 : ω(z) = ωo +
ω1z

1 + z
(6.48)

where ωo and ω1 are constants.

It should be noticed that the linear expression of model 1 yields a reasonable approx-

imation for most quintessence models out to redshift of a few, and, of course, it should

be exact for models where ω(z) is a constant or varies slowly. The unsuitable aspect of

the first expression is that it grows with no limit at high redshifts z > 1 (for example,

distance to the last scattering surface at zlss ' 1100). In order to fix such a problem, some

authors195,196 have proposed the second form which has the advantage of giving finite ω(z)

for all z. In both cases, ωo is the current value of the EOS parameter and ω1 defines its

variation rate for R close to the present epoch (z = 0).

6.3.1 Basic Equations

It is assumed that the Universe is flat and its dynamics is driven by a cold dark matter

(CDM) fluid plus a quintessence component. Both components are separately conserved

and the EOS parameter of the quintessence component is represented by one of the pa-

rameterizations from Eqs. (6.47) and (6.48). By integrating the energy conservation laws

for each component and combining the result with the FRW equation, it is straightforward

to show that the Hubble parameter for both models can be written as:

H2
Model1 = H2

0

[
ΩM(1 + z)3 + (1− ΩM)(1 + z)3(1+ω0−ω1)e3ω1z

]
, (6.49)
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and

H2
Model2 = H2

0

[
ΩM(1 + z)3 + (1− ΩM)(1 + z)3(1+ω0+ω1)e−3ω1(z/1+z)

]
, (6.50)

where the subscript “0” denotes a present day quantity and ΩM is the CDM density

parameter.

The first attempts involving gas mass fraction as a cosmological test were originally

performed by Pen197 and Sasaki198, and further fully developed by Allen et al.200 who

analyzed the X-ray observations for six relaxed lensing clusters observed with Chandra in

the redshift interval 0.1 < z < 0.5. A similar analysis has also been done for conventional

quintessence models having constant EOS parameter by Lima at al.199. These authors

also discussed the case for a cosmological scenario driven by phantom energy (ω < −1).

Further, this test was also applied in the context of a Chaplygin gas EOS223. More recently,

a detailed analysis using an improved sample observed with Chandra (26 clusters) was

performed by Allen and collaborators171 also considering a constant EOS parameter. In

such studies, it is usually assumed that the baryonic gas mass fraction in galaxy clusters

provides a fair sample of the distribution of baryons in the universe. In what follows, the

gas mass fraction is defined as199,171

fgas(zi) =
bΩb

(1 + 0.19h3/2) ΩM

[
2h

DSCDM
A (zi)

DDE
A (zi)

]1.5

, (6.51)

where b is a bias factor motivated by gas dynamical simulations that takes into account the

fact that the baryon fraction in clusters seems to be lower than for the universe as a whole,

Ωb stands for the baryonic mass density parameter, with the term (2h)3/2 representing

the change in the Hubble parameter between the default cosmology and quintessence

scenarios while the ratio DSCDM
A (zi)/D

DE
A (zi) accounts for deviations in the geometry of

the universe from the Einstein-de Sitter CDM model.

In order to derive the constraints from X-ray gas mass fraction we shall use the concept

of angular diameter distance, DA(z). Such a quantity is readily derived in the present

context (see, for instance, Refs.199 and223):

DDE
A =

H−1
o

(1 + z)

∫ 1

x′

dx

x2H(x)
. (6.52)

where x = R(t)
Ro

= (1 + z)−1 is a convenient integration variable. In what follows, we will

consider in our statistical modeling only flat cosmological models with Gaussian priors of

h = 0.72± 0.08201 with b = 0.824± 0.089171 and Ωbh
2 = 0.0214± 0.002202.
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6.3.2 Observational Constraints

Let us now discuss the constraints from X-ray luminosity of galaxy clusters and SNe

type Ia data. First, it is worth notice that the 26 clusters cataloged by Allen et al.171 are

all regular, relatively relaxed systems for which independent confirmation of the matter

density parameter results is available from gravitational lensing studies.

In order to determine the cosmological parameters ωo and ω1 we use a χ2 minimization

for the range of ω0 and ω1 spanning the interval [-2.3,-0.4] and [-4,6.5], respectively, in steps

of 0.025. The 68.3%, 90.0% and 95.4% confidence levels are defined by the conventional

two-parameters χ2 levels 2.30, 4.61 and 6.17, respectively. It is very important to note

that we do not consider any prior in ΩM, as usually required by the SNe Ia test.

In addition to our gas mass fraction analysis we consider the SNe Ia measurements as

given by Riess et al.203. The best fit of the model of Eq.(6.49) is χ2 = 202.06, ωo = −1.25,

ω1 = 1.3 and ΩM = 0.26. For the Model 2, the best fit is χ2 = 202.02, ωo = −1.4,

ω1 = 2.57 and ΩM = 0.26.

We now present our joint analysis (X-Ray luminosity from galaxy clusters and SNe Ia

data). In the first EOS parameter we find at 2σ of likelihood that−1.78 ≤ ωo ≤ −0.82 and

−1.2 ≤ ω1 ≤ 2.7. For the other model we get −2.0 ≤ ωo ≤ −0.8 and −2.0 ≤ ω1 ≤ 5.5 with

2σ. In Fig. 1, we show contours of constant likelihood in the ωo-ω1 plane. Note that the

allowed range for both ωo and ω1 is reasonably large thereby showing the impossibility of

placing restrictive limits on these quintessence scenarios. However, these limits are better

than those obtained by a simple SNe Ia analysis since in this case, the uncertainties on

both parameters are strongly correlated when one marginalizes over ΩM .

At this point, it is interesting to compare our results with other recent determinations

of ωo and ω1 derived from independent methods. For example, the age constraints recently

derived by Jain and Dev204 are ωo ≤ −0.31 and ω1 ≤ 0.96 for the first model, and

ω0 ≤ −0.31 and ω1 ≤ 3.29 for the second one. Riess et al.203 found ωo = −1.31+0.22
−0.28 (1σ)

and ω1 = 1.48+0.81
−0.90 (1σ) with the uncertainties in both parameters strongly correlated. In

the article of Padmanabhan and Choudhury196 we must to use a constant ΩM in order

to analyze the ωo − ω1 plane. It should be stressed that the EOS corresponding to the

cosmological constant is within the 1σ contour for 0.21 < ΩM < 0.41, and models with

ωo > −1/3 are ruled out at a high significance level for ΩM < 0.4 (we must to have very
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high negative values of ω1 in this case, and despite the high uncertainties in ω1 present in

this data set, we know that it cannot vary but a few from ωo); this supernova observation

analysis clearly indicates that the data are not sensitive to ω1 as compared to ωo.
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Figura 6.11: Marginalized constraints on plane ω0 and ω1 from joint analysis of the

Chandra fgas(z) and SNe Ia data shown above for models 1 (left panel) and 2 (right

panel). The solid lines mark the 1, 2 and 3 σ confidence limits. See text for more details.

6.3.3 Perspectives

We have discussed here two simple possible parameterizations of the EOS obeyed by

quintessence models as recently presented in the literature. Our results suggest that it

is worthwhile to use the estimates of the gas mass fraction from galaxy clusters in joint

analysis with the SNe Ia data since the derived constraints for ΩM (and other quantities)

do not require any prior to this parameter. More important, we have also obtained

constraints for wo and w1 which have not been obtained before without a prior in ΩM .

The parameterizations seems to be more efficient to explain these data set, once they

get a lower χ2; however they also have an additional parameter, and that is worthy of a

study with more specific statistical criteria (Akaike or Bayesian information criteria, for

example). A more detailed analysis of this kind will be investigated in the near future.
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6.4 Constraining H0 from Sunyaev-Zel’dovich effect,

Galaxy Clusters X-ray data, and Baryon Oscilla-

tions

In the current ΛCDM flat cosmology, a possible technique to broke the degenerescency

on the mass density parameter (Ωm) is to apply a joint analysis involving the baryon

acoustic oscillations (BAO). By adopting this technique to the (H0, Ωm) parameter space,

we obtain new constraints on the Hubble constant H0 from BAO signature as given by

the Sloan Digital Sky Survey (SDSS) catalog. Our analysis based on the SZE/X-ray data

for a sample of 25 clusters yields H0 = 74+4
−3.5 km s−1 Mpc−1 (1σ, neglecting systematic

uncertainties). This result is in good agreement with independent studies from the Hubble

Space Telescope key project and the recent estimates of WMAP, thereby suggesting that

the combination of these three independent phenomena provides an interesting method

to constrain the Hubble constant.

Galaxy clusters are one of the most impressive evolving structures from an earlier

stage of the Universe. Usually, they congregate thousands of galaxies and are endowed

with a hot gas (in the intra cluster medium), emitting X-rays primarily through thermal

bremsstrahlung. Several studies in the last decade have suggested that the combination

of data from different physical processes in galaxy clusters provides a natural method for

estimating cosmological parameters.

An important phenomena occurring in clusters is the Sunyaev-Zel’dovich Effect (SZE),

a small distortion of the Cosmic Microwave Background (CMB) spectrum provoked by

the inverse Compton scattering of the CMB photons passing through a population of

hot electrons (Sunyaev & Zel’dovich 1972228). Since the SZE is insensitive to the red-

shift of galaxy clusters, it provides a very convenient tool for studies at intermediate

redshifts where the abundance of clusters depends strongly on the underlying cosmology

(the unique redshift dependence appear in the total SZE flux due to the apparent size of

the cluster). Another fundamental process is the X-ray emission from the hot electrons in

the intracluster medium. When the X-ray surface brightness is combined with the SZE

temperature decrement in the CMB spectrum, the angular diameter distance of galaxy

clusters is readily obtained.
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The possibility to estimate the galaxy cluster distances trough SZ/X-ray technique was

suggested long ago by many authors205,206, but only recently it has been applied for a fairly

large number of clusters (for reviews, see Ref.206). Such a method is based on the different

dependence of the cluster electron density (ne) and the temperature Te of the SZE (∝ neTe)

and X-ray bremsstrahlung (∝ n2
eT

1/2
e ). Combining both measurements it is possible to

estimate the angular diameter distance and infer the value of the Hubble constant whether

the cosmology is fixed. The main advantage of this method for estimating H0 is that

it does not rely on extragalactic distance ladder being fully independent of any local

calibrator. A basic disadvantage rests on the difficulty of modeling the cluster gas which

causes great systematic uncertainties in its determination. In particular, this means that

systematic effects on H0 are quite different from the ones presented by other methods,

like the traditional distance ladder or gravitational lensing207,209.

In order to estimate the distance to the cluster from its X-ray spectroscopy, one needs

to add some complementary assumptions about its geometry. The importance of the in-

trinsic geometry of the cluster has been emphasized by many authors211,210. The standard

spherical geometry has been severely questioned, since Chandra and XMM-Newton obser-

vations have shown that clusters usually exhibit an elliptical surface brightness. In a point

of fact, the cluster shape estimation problem is a difficult matter since many clusters do

not appear in radio, X-ray, or optical. Another source of difficulty is related to the error

bars. Assuming that the clusters have an axisymmetric form, different authors introduced

a roughly random uncertainty in H0 between 15%−30%207,212. The assumed cluster shape

also affects considerably the SZE/X-ray distances, and, therefore, the Hubble constant

estimates.

Fox and Pen211 estimate the Hubble constant by assuming triaxial clusters and mea-

suring the distance to artificial observations corrected for asphericity. De Filippis and

collaborators209 showed that the spherical hypothesis is strongly rejected for most mem-

bers of the sample studied. By taking into account such an effect for two samples, a

better agreement with the cosmic concordance model (Ωm = 0.3, ΩΛ = 0.7) was obtained.

Triaxial clusters may also be useful for reconciling the observed discrepancies in the total

mass of clusters as computed with lensing and X-ray measurements (in this connection

see Ref.213).
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The determination of H0 has a practical and theoretical importance to many astrophys-

ical properties of galaxies and quasars, and several cosmological calculations, like the age

of the Universe, its size and energy density, primordial nucleosynthesis, and others214,215.

Spergel et al.164 have shown that CMB studies can not supply strong constraints on the

value of H0 on their own. This problem occurs due to the degenerescency on the parameter

space, and may be circumvented only by using independent measurements of H0
216.

On the other hand, according to cold dark matter (CDM) picture of structure for-

mation, large-scale fluctuations have grown since z ∼ 1000 by gravitational instability.

The cosmological perturbations excite sound waves in the relativistic plasma, producing

the acoustic peaks in the early universe. Eisenstein et al.217 presented the large scale

correlation function from the Sloan Digital Sky Survey (SDSS) showing clear evidence for

the baryon acoustic peak at 100h−1 Mpc scale, which is in excellent agreement with the

WMAP prediction from the CMB data. The Baryon Acoustic Oscillations (BAO) method

is independent of the Hubble constant H0 which means that we can use BAO signature

to break the degenerescency of the mass parameter Ωm. Hence, combining SZE/X-ray

method to obtain DA with BAO it is possible to improve the limits over H0 (for recent

applications of BAO see Ref.218.

Assuming that the clusters are ellipsoids with one axis parallel to the line of sight,

we derive new constraints on the Hubble constant H0. By considering the sample of 25

triaxial clusters given by De Filippis et al.209, we perform a joint analysis combining the

data from SZE and X-ray surface brightness with the recent SDSS measurements of the

baryon acoustic peak217.

6.4.1 Basic Equations and Sample

Let us now consider that the Universe is described by a flat Friedmann-Robertson-

Walker (FRW) geometry driven by cold dark matter plus a cosmological constant. In

this case, we have only two free parameters (H0, Ωm) and the angular diameter distance,

DA reads199,219,209

DA(z; h, Ωm) =
3000h−1

(1 + z)

∫ z

o

dz′

H(z′; Ωm)
Mpc, (6.53)
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where h = H0/100 km s−1 Mpc−1 and the dimensionless function H(z′; Ωm) is given by

H =
[
Ωm(1 + z′)3 + (1− Ωm)

]1/2
. (6.54)

Following De Filippis et al.209, a general triaxial morphology it will adopted here.

In this case, the intra cluster medium is described by an isothermal triaxial β-model

distribution and the SZE decrement reads

∆TSZ ≡ T0f(ν, Te)
σTkBTe

mec2
ne0

√
π

× DAθc,proj

b3/4

√
e1e2

eproj

g(β), (6.55)

where T0 = 2.728K is the CMB temperature, Te is the gas temperature, σT is the Thomp-

son cross section, the factor f(ν, Te) accounts for frequency shift and relativistic correc-

tions, neo is the central number density of the cluster gas, b is a function of the cluster

shape and orientation, eproj is the axial ratio of the major to the minor axes of the ob-

served projected isophotes, θc,proj is the projection on the plane of the sky of the intrinsic

angular core radius, and g(β) = Γ(3β − 1/2)/Γ(3β) (Γ denotes the Gamma function).

Similarly, the X-ray central surface brightness SX0 can be written as

SX0 ≡ ΛeH µe/µH

4
√

π(1 + z)4

n2
e0DAθc,proj

b3/4

√
e1e2

eproj

g(β), (6.56)

where z is the redshift of the cluster, ΛeH is the X-ray cooling function of the ICM in the

cluster rest frame and µ is the molecular weight (µi ≡ ρ/nimp).

De Filippis and collaborators (2005)209 studied and corrected the DA measurements

for 25 clusters, getting a better agreement with the ΛCDM models. We used two samples

studied by them to investigate the bounds arising from SZE/X-ray observations. One

of the samples, compiled by Reese et al. (2002)207, is a selection of 18 galaxy clusters

distributed over the redshift interval 0.14 < z < 0.8. The other one, the sample of

Mason et al. (2001)220, has 7 clusters from the X-ray limited flux sample of Ebeling

et al. (1996)221. De Filippis et al. (2005)209 show that the samples turn out slightly

biased, with strongly elongated clusters preferentially aligned along the line of sight.

Their results suggest that 15 clusters are in fact more elongated along the line of sight,

while the remaining 10 clusters are compressed.
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Figura 6.12: Angular diameter distance as a function of redshift for Ωm = 0.3 and some

selected values of the h parameter. The data points correspond to the the SZE/X-ray

distances for 25 clusters from De Filippis et al.209. The open diamond indicates the Abell

773 outlier cluster, which has been excluded from our statistical analysis.

In Fig. 6.12, the galaxy cluster sample is plotted on a residual Hubble diagram using a

flat cosmic concordance model (Ωm = 0.3, ΩΛ = 0.7). We see that the A773 cluster is the

largest outlier, and our statistical analysis confirms that its inclusion leads to the highest

χ2. For that reason we have excluded this data point from the statistical analysis.

6.5 Analysis and Results

Now, let us perform a χ2 fit over the h − Ωm plane. In our analysis we use a maximum

likelihood that can be determined by a χ2 statistics,

χ2(z|p) =
∑

i

(DA(zi;p)−DAo,i)
2

σ2
DAo,i

, (6.57)

where DAo,i is the observational angular diameter distance, σDAo,i
is the uncertainty in

the individual distance and the pair, p ≡ (h,Ωm), is the complete set of parameters.

In what follows, we first consider the SZE/X-ray distances separately, and, further, we

present a joint analysis including the BAO signature from the SDSS catalog. Note that a

specific flat cosmology has not been fixed by hand in the analyzes below.
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6.5.1 Limits from SZE/X-ray

We now consider the 24 clusters (without the A773, see Fig. 6.12), which constitutes

the SZE/X-ray data from De Filippis et al. (2005)209. Our analysis indicated that any

cosmological model could be accepted by that sample until 3σ (with 2 free parameters). It

also shows that using only the ellipsoidal cluster sample we cannot constrain the energetic

components of the cosmological model. This happens basically because the error bars are

large, mainly at intermediate and high redshifts.

Figura 6.13: Confidence regions (68.3%, 95.4% and 99.7%) in the (Ωm, h) plane provided

by the SZE/X-ray data from De Filippis et al. (2005)209. The best fit values are h = 0.75

and Ωm = 0.15.

In Fig. 6.13 we show the contours of constant likelihood (68.3%, 95.4% and 99.7%)

in the space parameter h−Ωm for the SZ/X-ray data discussed earlier. Note that only a

small range for the h parameter is allowed, (0.64 ≤ h ≤ 0.85), at 1σ of confidence level.

In particular, we found h = 0.75+0.07
−0.07 and Ωm = 0.15+0.57

−0.15 with χ2
min = 24.4 at 68.3%

c.l. for 1 free parameter. Naturally, such bounds on h are reasonably dependent on the

cosmological model adopted. For example, if we fix Ωm = 0.3 we have h = 0.74, for

Ωm = 1.0 we have h = 0.67, and both cases are permitted with high degree of confidence.

Clearly, we see that an additional cosmological test (fixing Ωm) is necessary in order to

break the degenerescency on the (Ωm, h) plane.
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Systematic effects still need to be considered. The common errors are: SZ ±8%, X-

ray ±10%, radio halos −3%, 5% for Galactic NH , 10% for isothermality, 2% kinetic SZ,

clumping causes −20%, radio source confusion ±12%, primary beam ±3% and 1% on the

CMB. When we combine the errors in quadrature, we find that the typical error are of

20% - 30%, in agreement with others works220,207,208.

Figura 6.14: Contours in the Ωm− h plane using the SZE/X-ray and BAO joint analysis.

The contours correspond to 68.3%, 95.4% and 99.7% confidence levels. The best-fit model

converges to h = 0.74 and Ωm = 0.27.

6.5.2 Joint Analysis for SZE/X-ray and BAO

As remarked earlier, more stringent constraints on the space parameter (h, Ωm) can be

obtained by combining the SZE/X-ray with the BAO signature217. The peak detected

(from a sample of 46748 luminous red galaxies selected from the SDSS Main Sample) is

predicted to arise precisely at the measured scale of 100 h−1 Mpc. Basically, it happens

due to the baryon acoustic oscillations in the primordial baryon-photon plasma prior

to recombination. Let us now consider it as an additional cosmological test over the

ellipsoidal cluster sample. Such a measurement is characterized by217

A ≡ Ω1/2
m

H(z∗)
1/3

[
1

z∗
Γ(z∗)

]2/3

= 0.469± 0.017, (6.58)
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where z∗ = 0.35 is the redshift at which the acoustic scale has been measured, and Γ(z∗)

is the dimensionless comoving distance to z∗.

Note that the above quantity is independent of the Hubble constant, and, as such,

the BAO signature alone constrains only the Ωm parameter. This property is very char-

acteristic of the BAO signature, thereby differentiating it from many others classical

cosmological tests, like the gas mass fraction199,171,127, luminosity distance222, or the age

of the universe223,224.

In Fig. 6.14, we show the confidence regions for the SZE/X-ray cluster distance and

BAO joint analysis. By comparing with Fig. 6.13, one may see how the BAO signature

breaks the degenerescency in the (Ωm, h) plane. As it appears, the BAO test presents a

striking orthogonality centered at Ωm = 0.27+0.03
−0.02 with respect to the angular diameter

distance data as determined from SZE/X-ray processes. We find h = 0.738+0.042
−0.033 and

χ2
min = 24.5 at 68.3% (c.l.) for 1 free parameter. An important lesson here is that the

combination of SZE/X-ray with BAO provides an interesting approach to constrain the

Hubble constant.

In Fig. 6.15, we have plotted the likelihood function for the h parameter in a flat

ΛCDM universe for the SZE/X-ray + BAO data set. The dotted lines are cuts in the

regions of 68.3% probability and 95.4%.

Our results are in line with some recent analyzes based on different cosmological

observations, like the one provided by the WMAP team h = 0.73 ± 0.03164, and the

HST Project h = 0.72 ± 0.08201. Note, however, that it does not agree with the recent

determination, h = 0.62 ± 0.013 (random) ±0.05 (systematics), recently advocated by

Sandage and collaborators (2006)225. A result obtained with basis on Type Ia Supernovae,

calibrated with Cepheid variables in nearby galaxies that hosted them.

At this point, it is interesting to compare our results with others recent works in

which the limits on h were obtained by fixing the cosmology (Ωm = 0.3, ΩΛ = 0.7, cosmic

concordance), and assuming spherical geometry. A measurement using SZ effect was

accomplished by Mason et al. (2001)220, using 5 clusters, and gives h = 0.66+0.14
−0.11; Reese

and coauthors (2002)207, using 18 clusters, found h = 0.60 ± 0.04, and in a posterior

analysis208, with 41 clusters, obtains h ≈ 0.61 ± 0.03; Jones et al. (2005)212 derived

h = 0.66+0.11
−0.10, using a sample of 5 clusters free of any orientation bias. In a recent paper,
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Figura 6.15: Likelihood function for the h parameter in a flat ΛCDM universe, from

SZE/X-ray emission. The shadow lines are cuts in the regions of 68.3% probability and

95.4%. We see that the region permitted is well constrained and in concordance with

others studies201,164.

Tabela 6.1: SZ/X-ray method: Limits to h from galaxy clusters (ΛCDM).

Reference (data) Ωm h (1σ) χ2

Mason et al. 2001 (7)220 0.3 0.66+0.14
−0.11 ' 2

Reese et al. 2002(18)207 0.3 0.60+0.04
−0.04 16.5

Reese 2004 (41)208 0.3 0.61+0.03
−0.03 –

Jones et al. 2005 (5)212 0.3 0.66+0.11
−0.10 –

Bonamente et al. 2006 (38)213 0.3 0.77+0.04
−0.03 31.6

Present work (24) 0.15+0.57
−0.15 0.75+0.07

−0.07 24.4

Present work (24)+BAO 0.27+0.04
−0.03 0.74+0.04

−0.03 24.5

136



Bonamente et al. (2006)213, using 38 clusters, obtained h = 0.769+0.039
−0.034. All these results,

using SZ/X-ray technique, presented a systematic uncertainty of 10%-30%. In Table 6.1,

we summarize the estimates of H0 from clusters in the framework of ΛCDM models (the

data in round brackets is the number of clusters).

It is worth notice that the best-fit scenario derived here, Ωm = 0.27+0.03
−0.02 and

h = 0.738+0.042
−0.033, corresponds to an accelerating Universe with q0 = −0.6, a total evolution-

ary age of to ' 10h−1 Gyr, and a transition redshift (from deceleration to acceleration)

zt ' 0.6. At 95.4% c.l. (2σ) the BAO+SZE/X-ray analysis also provides h = 0.74+0.08
−0.07.

Hopefully, future developments related to the physics of clusters may shed some light on

the nature of the dark energy (for reviews see Refs.226,227).

6.5.3 Conclusions

Since the original work of Hubble, the precise determination of the distance scale (H0)

has been a recurrent problem in the development of physical cosmology. In this letter

we have discussed a new determination of the Hubble constant based on the SZE/X-ray

distance technique for a sample of 24 clusters as compiled by De Filippis et al. (2005)209.

The degenerescency on the Ωm parameter was broken using the baryon acoustic oscil-

lation signature from the SDSS catalog. The Hubble constant was constrained to be

h = 0.74+0.04
−0.035 and +0.08

−0.07 for 1σ and 2σ, respectively. These limits were derived assuming

elliptical β-model and a flat ΛCDM scenario.

As we have seen, the baryon acoustic signature is an interesting tool for constraining

directly the mass density parameter, Ωm, and, indirectly, it also improves the Hubble

constant limits acquired from other cosmological techniques (like the SZE/X-ray cluster

distance). Our Hubble constant estimation using the joint analysis SZE/X-ray + BAO

is largely consistent with some recent cosmological observations, like the third year of

the WMAP and the HST Key Project. Implicitly, such an agreement suggests that

the elliptical morphology describing the cluster sample and the associated isothermal β-

model is quite realistic. It also reinforces the interest to the observational search of galaxy

clusters in the near future, when more and larger samples, smaller statistic and systematic

uncertainties will improve the limits on the present value of the Hubble parameter.
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Caṕıtulo 7

CONCLUSÕES E PERSPECTIVAS

Mostramos no caṕıtulo 5 os resultados de um recente trabalho139, em que propusemos

um novo formalismo anaĺıtico baseado na estat́ıstica não-extensiva de Tsallis, onde uma

distribuição de lei de potência (Power Law - PL) é empregada para o campo primordial

que representa o contraste de densidade. Tal distribuição possui um parâmetro livre q que

regula o grau de não-gaussianidade do campo primordial. A distribuição PL recupera a

forma Gaussiana padrão quando q → 1. Em outro recente artigo146 analisamos as pro-

priedades estat́ısticas, especialmente a normalização, de diversas distribuições (incluindo

a distribuição PL) aplicadas ao campo primordial do contraste de densidade, e descobri-

mos que a conhecida distribuição de Burr, além de possuir 2 parâmetros livres e permitir

com isso a mesma maleabilidade que nossa distribuição PL, tem ainda a vantagem de

corrigir o problema de normalização do formalismo original de PS.

Após termos definido o novo formalismo PL baseado na estat́ıstica não-extensiva de

Tsallis, precisávamos verificar se o parâmetro livre q permitia efetivamente explicar os

atuais dados observacionais. No caso do catálogo de raio-X de galáxias HIFLUGCS156,

baseado no ROSAT All-Sky Survey, a função de massa de PS que se adequa aos dados

fornece parâmetros de σ8 (a amplitude das flutuações de densidade em esferas de raio

8h−1Mpc) e Ωm (a densidade de matéria do universo) claramente fora (em 3σ ou mais)

dos atuais limites definidos pelo 3o ano do WMAP164. Em outras palavras, o método

de PS padrão não explica os atuais dados de raio-X de galáxias. Calculando o χ2 pelo

método de máxima verossimilhança nós asseguramos que, usando a distribuição PL com

os dados do catálogo HIFLUGCS, obtemos parâmetros σ8 e Ωm plenamente compat́ıveis

com os dados do WMAP4. Vemos claramente que o método PL se ajusta às observações
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com parâmetros compat́ıveis com o WMAP, enquanto o mesmo não se processa no método

PS padrão4. Naturalmente, tais resultados devem depender do tipo de energia escura que

está acelerando o universo. Os resultados descritos até aqui foram obtidos para o caso de

uma constante cosmológica.

Estudamos também a influência da energia escura no processo de formação de estru-

turas. O trabalho de incorporar modelos de energia escura na formação de estruturas do

universo está começando a ser implementado na literatura. Por exemplo, o modelo de

colapso esférico com energia escura homogênea foi discutido por Wang (2005)3; também

no estudo da virialização, modelos onde energia escura imita o efeito de uma constante

cosmológica foram implementados145; Independentemente, recentes catálogos de raio-X

de altos redshifts (z ≥ 0.3), como o EMSS, permitem limites restritos para a equação de

estado da energia escura2. Nossos estudos nesta vertente já se encontram em andamento.

Seguimos o trabalho de Percival (2005)152, que analisou a formação de estruturas em um

fundo homogêneo de energia escura, fornecendo uma fórmula de ajuste para o fator de

crescimento linear, em cosmologias com ω constante. A incorporação desse ajuste com

energia escura já foi concluido no formalismo PS padrão, e está sendo implementado em

nosso formalismo PL. O passo seguinte será aplicá-lo para os demais modelos de ener-

gia escura presentes na literatura. Devemos também considerar diversas parametrizações

ω(z), procurando empregá-las no modelo anaĺıtico de formação de estruturas, em con-

junto com o método PL descrito anteriormente. Com tais análises pretendemos verificar

a real influência da energia escura no processo de formação de estruturas.

No caṕıtulo 6 a cosmologia não extensiva é ainda abordada na radiação de Bremsstrahlung,

a radiação primária dos aglomerados de raio-X, e também na sonda de plasma, com evi-

dentes aplicações em astrof́ısica experimental. Por fim, tratamentos de dados dos atuais

catálogos de galáxias nos permitiram análises conjuntas127,17 que limitaram melhor os

principais parâmetros dos modelos, objetivando eleger o candidato mais adequado para o

novo paradigma cosmológico.

Poderemos futuramente realizar simulações de N-Corpos para determinarmos a função

de massa ideal de halos de matéria escura na fase não-linear. É bem compreendido hoje

que o modelo de Press-Schechter se ajusta muito mal aos dados computacionais atuais,

e isso em todas as épocas de formação. O modelo modificado da função de massa, de
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Sheth-Tormen158,1 fornece um melhor ajuste, mas ainda apresenta um número muito alto

da abundância de objetos raros, em todas as épocas, por um valor acima de 50%. Desse

modo, um grande estudo foi empreendido usando diversas simulações de N-Corpos em

diversos redshifts, para determinar uma equação ideal para a função de massa, com ajuste

superior à função de massa de PS e de Sheth-Tormen16. Nosso intento será comparar todas

as funções de massa apresentadas, incluindo a das simulações de N-Corpos, com nossa

função de massa PL, e assim verificar as previsões e o poder de ajuste dessa última face

às demais.

Estudaremos a formação de grandes estruturas usando nosso formalismo de Lei de

Potências (PL) para o campo inicial das perturbações, implementando o modelo de energia

escura do trabalho de Percival152, como descrito anteriormente. Submeteremos igualmente

trabalhos visando analisar um campo inicial de perturbações regido pela distribuição de

Burr, que como vimos é capaz de resolver o problema de normalização de Press-Schechter;

veremos nas análises subseqüentes se tal distribuição oferece a maleabilidade necessária

para explicar os atuais dados em raio-X dos aglomerados de galáxias, assim como já

verificamos ser o caso com nosso método PL. Visamos igualmente submeter artigos usando

a distribuição de Burr junto com o modelo de energia escura de Percival152, para termos

um quadro geral da influência da energia escura no processo de formação de estruturas,

usando um campo primordial de perturbações não-gaussiano.

Poderemos analisar aglomerados de galáxias, em médios e altos redshifts, utilizando

os testes de raio-X, SNe Ia, diâmetro angular, Gamma-Ray Bursts, idade, efeito Sunyaev-

Zel´dovich (ESZ) e Baryon Acoustic Oscillations (BAO); estudaremos então os mais re-

centes catálogos observacionais, usando diversos modelos cosmológicos nas análises, in-

cluindo matéria e energia escura (diversos modelos de energia escura, parametrizações,

além do caso da phantom-energy). Faremos assim um estudo sistemático pondo a prova

os modelos mais cogitados na literatura. Com isso teremos uma base real de validação

dos modelos que melhor explicam os atuais dados observacionais, além de precisarem ser

coerentes com os mais recentes dados do WMAP. Tais trabalhos certamente excluirão

diversos modelos cosmológicos, e aumentarão nosso conhecimento sobre a formação das

estruturas no universo.

Critérios estat́ısticos mais poderosos poderão ser usados na análise dos aglomerados
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de galáxias. Diversas análises estat́ısticas serão empregadas no mesmo problema, para

verificarmos se a adequação do modelo aos dados é um problema do modelo cosmológico

empregado ou do tratamento estat́ıstico escolhido. Ainda submeteremos trabalhos sobre

formação de estruturas, incluindo comparações diretas com os mais recentes dados com-

putacionais (simulações massivas de N-Corpos), do espectro de potências e da função de

massa; pretendemos com isso verificar se nosso modelo PL, ou mesmo o de Burr, seriam

mais efetivos que os de Sheth-Tormen158,1 para corrigir os ajustes em relação ao modelo

original de PS.

No ano de 2007 o satélite Planck fornecerá ao mundo os dados cosmológicos mais re-

centes e precisos jamais vistos até então. Pretendemos em um futuro bem próximo focar

nossa atenção em análises profundas desses dados, utilizando todo o arcabouço teórico

desenvolvido acima, e comparando aos dados anteriores, e também às observações inde-

pendentes de outras fontes. Muitos trabalhos serão desenvolvidos nessa linha, no esṕırito

dos desenvolvimentos anteriores. Certamente deveremos descartar vários modelos, assim

como iremos apontar os mais aptos a explicar o paradigma cosmológico atual. O objetivo

básico é obter uma melhor compreensão da formação de estruturas e, consequentemente,

do comportamento da matéria escura e da energia escura no universo.
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